Ionic properties of an essential histidine residue in pig heart lactate dehydrogenase. 1973

J J Holbrook, and V A Ingram

1. Pig heart lactate dehydrogenase is inhibited by addition of one equivalent of diethyl pyrocarbonate. The inhibition is due to the acylation of a unique histidine residue which is 10-fold more reactive than free histidine. No other amino acid side chains are modified. 2. The carbethoxyhistidine residue slowly decomposes and the enzyme activity reappears. 3. The essential histidine residue is only slightly protected by the presence of NADH but is completely protected when substrate and substrate analogues bind to the enzyme-NADH complex. The protection is interpreted in terms of a model in which substrates can only bind to the enzyme in which the histidine residue is protonated and is thus not available for reaction with the acylating agent. 4. The apparent pK(a) of the histidine residue in the apoenzyme is 6.8+/-0.2. In the enzyme-NADH complex it is 6.7+/-0.2. 5. Acylated enzyme binds NADH with unchanged affinity. The enzyme is inhibited because substrates and substrate analogues cannot bind at the acylated histidine residue in the enzyme-NADH complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine

Related Publications

J J Holbrook, and V A Ingram
January 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J J Holbrook, and V A Ingram
September 1970, European journal of biochemistry,
J J Holbrook, and V A Ingram
June 1986, Journal of biochemistry,
J J Holbrook, and V A Ingram
April 1975, European journal of biochemistry,
J J Holbrook, and V A Ingram
September 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J J Holbrook, and V A Ingram
May 1992, Journal of biochemistry,
J J Holbrook, and V A Ingram
January 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!