Uses of fluorescent cholinergic analogues to study binding sites for cholinergic ligands in Torpedo californica acetylcholine receptor. 1979

J Bode, and T Moody, and M Schimerlik, and M Raftery

A series of synthetic 1,n-bis(3-aminopyridinio)-alkane fluorescent probes have been used to determine the ligand binding properties of the acetylcholine receptor purified from Torpedo californica electroplax. At equilibrium, the probes bound to a single class of sites. The binding affinity of the fluorescent decamethonium analogues increased progressively as the number of methylene groups (n) increased from 4 to 12 and decreased in the range of 16--18 such groups. The receptor bound 1,12-bis(3-aminopyridinio)dodecane and 1,14-bis(3-aminopyridinio)tetradecane with the highest affinity while related monofunctional probes such as 1-(3-amino-pyridinio)propane were bound with a substantially lower affinity. The data indicate that the receptor interacts strongly with both ends of a bifunctional probe such as 1,14-bis(3-aminopyridinio)tetradecane. Also, competition between bifunctional fluorescent probe binding and the binding of conventional cholinergic ligands, was investigated and led to the conclusion that the probes, which are antagonists, form ternary complexes in the presence of acetylcholine.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

J Bode, and T Moody, and M Schimerlik, and M Raftery
August 1993, Biochemistry,
J Bode, and T Moody, and M Schimerlik, and M Raftery
November 1982, Biochemistry,
J Bode, and T Moody, and M Schimerlik, and M Raftery
August 1978, Biochemistry,
J Bode, and T Moody, and M Schimerlik, and M Raftery
September 1977, Archives of biochemistry and biophysics,
J Bode, and T Moody, and M Schimerlik, and M Raftery
January 1979, Archives of biochemistry and biophysics,
J Bode, and T Moody, and M Schimerlik, and M Raftery
December 1973, Biochemical and biophysical research communications,
J Bode, and T Moody, and M Schimerlik, and M Raftery
January 1979, Advances in cytopharmacology,
J Bode, and T Moody, and M Schimerlik, and M Raftery
August 1973, Biochemical and biophysical research communications,
J Bode, and T Moody, and M Schimerlik, and M Raftery
April 2003, Biochemistry,
Copied contents to your clipboard!