Purification and properties of cytoplasmic and mitochondrial malate dehydrogenases of Physarum polycephalum. 1973

W M Teague, and H R Henney

Two isoenzymes of malate dehydrogenase (MDH) were demonstrated in plasmodia of Physarum polycephalum by polyacrylamide-gel electrophoresis. The more "cathodal" form was uniquely associated with mitochondria (M-MDH) and the other form was found in the soluble cytoplasm (S-MDH). The isoenzymes were separated by acetone fractionation of soluble plasmodial homogenates acidified to pH 5.0. The M-MDH was purified 201-fold by cetylpyridinium chloride treatment, fractionation with ammonium sulfate, gradient elution from sulfoethyl cellulose at pH 6.0, and Sephadex G-100 chromatography. The S-MDH was purified 155-fold by ammonium sulfate fractionation, diethylaminoethyl cellulose chromatography, gradient elution from sulfoethyl cellulose at pH 5.5, and Sephadex G-100 chromatography. The optimal cis-oxalacetate concentrations were 0.35 mM for M-MDH and 0.25 mM for S-MDH, and the optimal pH for both isoenzymes was 7.6 for oxalacetate reduction. The optimal l-malate concentrations were 5 mM for S-MDH and 6 mM for M-MDH, and both isoenzymes exhibited an optimal pH of 10.0 for L-malate oxidation. The Michaelis constants of S-MDH and M-MDH served to discriminate between the isoenzymes. The S-MDH was more heat-stable than the M-MDH. High concentrations of oxalacetate and malate inhibited S-MDH more than M-MDH. The isoenzymes were further distinguished by their utilization of analogues of nicotinamide adenine dinucleotide. Many properties of the Physarum isoenzymes were similar to those of more complex organisms, especially vertebrates.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009235 Myxomycetes A division of organisms that exist vegetatively as complex mobile plasmodia, reproduce by means of spores, and have complex life cycles. They are now classed as protozoa but formerly were considered fungi. Myxomycota,Protosteliomycetes,Slime Molds, Plasmodial,Slime Molds, True,Mold, Plasmodial Slime,Mold, True Slime,Molds, Plasmodial Slime,Molds, True Slime,Myxomycete,Myxomycotas,Plasmodial Slime Mold,Plasmodial Slime Molds,Protosteliomycete,Slime Mold, Plasmodial,Slime Mold, True,True Slime Mold,True Slime Molds
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002594 Cetylpyridinium Cationic bactericidal surfactant used as a topical antiseptic for skin, wounds, mucous membranes, instruments, etc.; and also as a component in mouthwash and lozenges. Angifonil,Biosept,Catamium,Ceepryn Chloride,Cetamium,Cetylpyridinium Chloride,Cetylpyridinium Chloride Anhydrous,Cetylpyridium,Cetylyre,Dobendan,Hexadecylpyridinium,Merocets,Pristacin,Pyrisept,Sterogenol,Anhydrous, Cetylpyridinium Chloride,Chloride Anhydrous, Cetylpyridinium,Chloride, Ceepryn,Chloride, Cetylpyridinium
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies

Related Publications

W M Teague, and H R Henney
May 1967, Biochimica et biophysica acta,
W M Teague, and H R Henney
November 1970, Biochimica et biophysica acta,
W M Teague, and H R Henney
June 1962, Biochimica et biophysica acta,
W M Teague, and H R Henney
February 1970, Biochimica et biophysica acta,
W M Teague, and H R Henney
January 1984, The Journal of biological chemistry,
W M Teague, and H R Henney
December 1978, The Journal of biological chemistry,
W M Teague, and H R Henney
May 1967, Biochimica et biophysica acta,
W M Teague, and H R Henney
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!