A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse Balb-3T3 cells. 1973

K R Porter, and G J Todaro, and V Fonte

Cells of the mouse line Balb/3T3 as well as three virus-induced transformants and two spontaneous transformants grown in vitro have been studied for their topography by scanning electron microscopy. The parent cell in confluent culture closely resembles an endothelial cell in its form and in the structure of its association with adjacent cells. The tumorigenic transformants produced by SV40, murine sarcoma virus, or polyoma viruses are fusiform to pleomorphic and distinctly different from the cell of origin. They show relatively smooth surfaces except for blebs and marginal microvilli. Perhaps most surprising is the similarity they bear to one another. This is made the more singular by the very different form shown by the tumorigenic transformants of spontaneous origin. One of these, S2-4, possesses a thickened rather than the lamellar form of the parent A31 cell and is covered by long microvilli and many spherical blebs. The other, TuT(3), more closely resembles the cell of origin but shows extensive ruffling at its margins. All transformants grow without evidence of contact inhibition. The significance of the surface morphologies and the factors influencing cell form are discussed.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009858 Oncogenic Viruses Viruses that produce tumors. Tumor Viruses,Oncogenic Virus,Tumor Virus,Virus, Oncogenic,Virus, Tumor,Viruses, Oncogenic,Viruses, Tumor
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003260 Contact Inhibition Arrest of cell locomotion or cell division when two cells come into contact. Inhibition, Contact,Contact Inhibitions,Inhibitions, Contact
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects

Related Publications

K R Porter, and G J Todaro, and V Fonte
July 1972, Journal of cell science,
K R Porter, and G J Todaro, and V Fonte
January 1969, Journal of microscopy,
K R Porter, and G J Todaro, and V Fonte
November 1977, Journal of periodontal research,
K R Porter, and G J Todaro, and V Fonte
December 1978, Israel journal of medical sciences,
K R Porter, and G J Todaro, and V Fonte
November 1978, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
K R Porter, and G J Todaro, and V Fonte
January 1976, Tissue & cell,
K R Porter, and G J Todaro, and V Fonte
January 1963, Comptes rendus des seances de la Societe de biologie et de ses filiales,
K R Porter, and G J Todaro, and V Fonte
January 1978, Brain research bulletin,
K R Porter, and G J Todaro, and V Fonte
January 1982, Acta pathologica, microbiologica, et immunologica Scandinavica. Section A, Pathology,
K R Porter, and G J Todaro, and V Fonte
March 1970, Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik,
Copied contents to your clipboard!