Plasma clearance rates and renal clearance of 3H-labeled cyclic AMP and 3H-labeled cyclic GMP in the dog. 1974

L Blonde, and R E Wehmann, and A L Steiner

Previously, in an attempt to understand the mechanisms involved in the regulation of plasma cyclic nucleotides, we measured concentrations of adenosine 3',5'-monophosphate (cAMP) and guanosine 3',5'-monophosphate (cGMP) in plasma from selected blood vessels of anesthetized dogs. The observation that the renal venous plasma concentrations of both cyclic nucleotides were less than arterial concentrations suggested that the kidney might be an important site for the elimination of these compounds from plasma and prompted further investigation of the renal handling of these compounds. Tracer doses of either [(3)H]cAMP or [(3)H]cGMP were administered to anesthetized dogs by constant intravenous infusion, and metabolic clearance rates were determined. Concentrations of endogenous cyclic nucleotide and of cyclic nucleotide radioactivity were measured in aortic and renal venous plasma as well as in urine. Renal venous plasma [(3)H]cGMP was 39% and [(3)H]cAMP was 65% of the concentration in arterial plasma. Endogenous cyclic nucleotide levels showed a similar relationship. The plasma clearance rates (PCR) were 271+/-27 ml/min (mean+/-SE) for cGMP and 261+/-17 for cAMP. The total kidney clearance (calculated as the renal plasma flow x renal cyclic nucleotide extraction ratio) accounted for 52+/-4% and 30+/-2% of the PCR for cGMP and cAMP, respectively. Only about two-thirds of the total kidney clearance of each cyclic nucleotide could be accounted for by urinary excretion, the remainder presumably being the result of renal metabolism. The urinary clearances of (3)H-labeled cGMP (40.9+/-4.2 ml/min) and endogenous cGMP (45.0+/-2.3 ml/min) were not significantly different from each other. Both were approximately 50% greater than the glomerular filtration rate, which was 27.1+/-2.0 ml/min, indicating that a significant amount of urinary cGMP is derived from plasma by tubular secretion. In contrast, the urinary clearances of (3)H-labeled cAMP (23.7+/-1.9 ml/min) and endogenous cAMP (27.2+/-2.6 ml/min) were nearly equal both to each other and to the glomerular filtration rate, which was 24.6+/-1.7 ml/min. Thus, in the dog, glomerular filtration of plasma cAMP appears to be responsible for most of the cAMP found in urine. Renla production of cAMP, which in humans contributes from a third to a half of the urinary cAMP, was quantitatively of minor importance in the dog.Thus, under the conditions of these experiments in dogs, renal elimination appears to be responsible for half of the PCR of cGMP and about a third of the PCR of cAMP. About a third of the renal elimination of both cyclic nucleotides appears to be due to metabolic degradation within the kidney, and the balance is due to excretion in the urine.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D012082 Renal Veins Short thick veins which return blood from the kidneys to the vena cava. Renal Vein,Vein, Renal,Veins, Renal
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L Blonde, and R E Wehmann, and A L Steiner
June 1984, Journal of autism and developmental disorders,
L Blonde, and R E Wehmann, and A L Steiner
June 1981, Japanese circulation journal,
L Blonde, and R E Wehmann, and A L Steiner
April 1979, Biochemical and biophysical research communications,
L Blonde, and R E Wehmann, and A L Steiner
January 1988, Life sciences,
L Blonde, and R E Wehmann, and A L Steiner
January 1977, Archives of biochemistry and biophysics,
L Blonde, and R E Wehmann, and A L Steiner
March 1996, Analytical biochemistry,
L Blonde, and R E Wehmann, and A L Steiner
January 1979, Advances in cyclic nucleotide research,
L Blonde, and R E Wehmann, and A L Steiner
April 1977, Acta hepato-gastroenterologica,
L Blonde, and R E Wehmann, and A L Steiner
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!