The rapid changes of hepatic glycolytic enzymes and fructose-1,6-diphosphatase activities after intravenous glucagon in humans. 1974

H L Greene, and O D Taunton, and F B Stifel, and R H Herman

Glucagon (0.04-0.09 mg/kg/min) was given intravenously for either 2 or 3 min to eight patients with fasting-induced hypoglycemia. One child had hepatic phosphorylase deficiency, two children had glucose-6-phosphatase deficiency, two children had debrancher enzyme (amylo-1,6-glucosidase) deficiency, and two children and one adult had decreased hepatic fructose-1,6-diphosphatase (FDPase) activity. Liver biopsy specimens were obtained before and immediately after the glucagon infusion. The glucagon caused a significant increase in the activity of FDPase (from 50+/-10.0 to 72+/-11.7 nmol/mg protein/min) and a significant decrease in the activities of phosphofructokinase (PFK) (from 92+/-6.1 to 41+/-8.1 nmol/mg protein/min) and pyruvate kinase (PK) (from 309+/-39.4 to 165+/-23.9 nmol/mg protein/min). The glucagon infusion also caused a significant increase in hepatic cyclic AMP concentrations (from 41+/-2.6 to 233+/-35.6 pmol/mg protein). Two patients with debrancher enzyme deficiency who had biopsy specimens taken 5 min after the glucagon infusion had persistence of enzyme and cyclic AMP changes for at least 5 min. One child with glucose-6-phosphatase deficiency was given intravenous glucose (150 mg/kg/min) for a period of 5 min after the glucagon infusion and biopsy. The plasma insulin concentration increased from 8 to 152 muU/ml and blood glucose increased from 72 to 204 mg/100 ml. A third liver biopsy specimen was obtained immediately after the glucose infusion and showed that the glucagon-induced effects on PFK and FDPase were completely reversed. The glucagon infusion caused an increase in hepatic cyclic AMP concentration from 38 to 431 pmol/mg protein but the glucose infusion caused only a slight decrease in hepatic cyclic AMP concentration (from 431 to 384 pmol/mg protein), which did not appear to be sufficient to account for the changes in enzyme activities. Hepatic glucose-6-phosphatase and fructose-1,6-diphosphate aldolase activities were not altered by either the glucagon or the glucose infusion in any patients. Cyclic AMP (0.05 mmol/kg) was injected into the portal vein of adult rats and caused enzyme changes similar to those seen with glucagon administration in humans. Our findings suggest that rapid changes in the activities of PFK, PK, and FDPase are important in the regulation of hepatic glycolysis and gluconeogenesis, respectively, in humans and that cyclic AMP may mediate the glucagon- but probably not the glucose-insulin-induced changes in enzyme activities.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005260 Female Females
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

H L Greene, and O D Taunton, and F B Stifel, and R H Herman
September 1971, Archives of biochemistry and biophysics,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
September 1971, Archives of biochemistry and biophysics,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
November 1972, The Biochemical journal,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
January 1992, Journal of inherited metabolic disease,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
September 1974, The Journal of biological chemistry,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
November 1972, Biochimica et biophysica acta,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
January 1984, Archives francaises de pediatrie,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
January 1960, The American journal of physiology,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
January 1988, Journal of inherited metabolic disease,
H L Greene, and O D Taunton, and F B Stifel, and R H Herman
May 1976, The Journal of biological chemistry,
Copied contents to your clipboard!