Proton relaxation rates of water in brain and brain tumors. 1974

R G Parrish, and R J Kurland, and W W Janese, and L Bakay

The distribution of relaxation rates of water in "normal" (autopsy) samples of canine and human brain shows considerable overlap with that for brain tumor samples. The following ranges of values for the spin-spin relaxation rates were observed: for normal brain gray matter, 8.6 to 11.3 sec(-1) (mean, 9.5 sec(-1)); for normal brain white matter, 13.3 to 15.7 sec(-1) (mean, 15.5 sec(-1)); for six types of malignant tumor, 4.8 to 13.4 sec(-1) (mean, 9.3 sec(-1)); for five types of benign tumor, 7.1 to 16.4 sec(-1) (mean, 11.5 sec(-1)). Spin-lattice relaxation rates showed a similar pattern. At least two nonexchanging water components with different relaxation rates were indicated by the analysis of the spin-spin relaxation measurements for the white matter samples.

UI MeSH Term Description Entries
D008579 Meningioma A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7) Benign Meningioma,Malignant Meningioma,Meningiomas, Multiple,Meningiomatosis,Angioblastic Meningioma,Angiomatous Meningioma,Cerebral Convexity Meningioma,Clear Cell Meningioma,Fibrous Meningioma,Hemangioblastic Meningioma,Hemangiopericytic Meningioma,Intracranial Meningioma,Intraorbital Meningioma,Intraventricular Meningioma,Meningotheliomatous Meningioma,Microcystic Meningioma,Olfactory Groove Meningioma,Papillary Meningioma,Parasagittal Meningioma,Posterior Fossa Meningioma,Psammomatous Meningioma,Secretory Meningioma,Sphenoid Wing Meningioma,Spinal Meningioma,Transitional Meningioma,Xanthomatous Meningioma,Angioblastic Meningiomas,Angiomatous Meningiomas,Benign Meningiomas,Cerebral Convexity Meningiomas,Clear Cell Meningiomas,Convexity Meningioma, Cerebral,Convexity Meningiomas, Cerebral,Fibrous Meningiomas,Groove Meningiomas, Olfactory,Hemangioblastic Meningiomas,Hemangiopericytic Meningiomas,Intracranial Meningiomas,Intraorbital Meningiomas,Intraventricular Meningiomas,Malignant Meningiomas,Meningioma, Angioblastic,Meningioma, Angiomatous,Meningioma, Benign,Meningioma, Cerebral Convexity,Meningioma, Clear Cell,Meningioma, Fibrous,Meningioma, Hemangioblastic,Meningioma, Hemangiopericytic,Meningioma, Intracranial,Meningioma, Intraorbital,Meningioma, Intraventricular,Meningioma, Malignant,Meningioma, Meningotheliomatous,Meningioma, Microcystic,Meningioma, Multiple,Meningioma, Olfactory Groove,Meningioma, Papillary,Meningioma, Parasagittal,Meningioma, Posterior Fossa,Meningioma, Psammomatous,Meningioma, Secretory,Meningioma, Sphenoid Wing,Meningioma, Spinal,Meningioma, Transitional,Meningioma, Xanthomatous,Meningiomas,Meningiomas, Angioblastic,Meningiomas, Angiomatous,Meningiomas, Benign,Meningiomas, Cerebral Convexity,Meningiomas, Clear Cell,Meningiomas, Fibrous,Meningiomas, Hemangioblastic,Meningiomas, Hemangiopericytic,Meningiomas, Intracranial,Meningiomas, Intraorbital,Meningiomas, Intraventricular,Meningiomas, Malignant,Meningiomas, Meningotheliomatous,Meningiomas, Microcystic,Meningiomas, Olfactory Groove,Meningiomas, Papillary,Meningiomas, Parasagittal,Meningiomas, Posterior Fossa,Meningiomas, Psammomatous,Meningiomas, Secretory,Meningiomas, Sphenoid Wing,Meningiomas, Spinal,Meningiomas, Transitional,Meningiomas, Xanthomatous,Meningiomatoses,Meningotheliomatous Meningiomas,Microcystic Meningiomas,Multiple Meningioma,Multiple Meningiomas,Olfactory Groove Meningiomas,Papillary Meningiomas,Parasagittal Meningiomas,Posterior Fossa Meningiomas,Psammomatous Meningiomas,Secretory Meningiomas,Sphenoid Wing Meningiomas,Spinal Meningiomas,Transitional Meningiomas,Wing Meningioma, Sphenoid,Wing Meningiomas, Sphenoid,Xanthomatous Meningiomas
D009455 Neurofibroma A moderately firm, benign, encapsulated tumor resulting from proliferation of SCHWANN CELLS and FIBROBLASTS that includes portions of nerve fibers. The tumors usually develop along peripheral or cranial nerves and are a central feature of NEUROFIBROMATOSIS 1, where they may occur intracranially or involve spinal roots. Pathologic features include fusiform enlargement of the involved nerve. Microscopic examination reveals a disorganized and loose cellular pattern with elongated nuclei intermixed with fibrous strands. (From Adams et al., Principles of Neurology, 6th ed, p1016) Neurofibromas
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002817 Chordoma A malignant tumor arising from the embryonic remains of the notochord. It is also called chordocarcinoma, chordoepithelioma, and notochordoma. (Dorland, 27th ed) Chordomas
D004806 Ependymoma Glioma derived from EPENDYMOGLIAL CELLS that tend to present as malignant intracranial tumors in children and as benign intraspinal neoplasms in adults. It may arise from any level of the ventricular system or central canal of the spinal cord. Intracranial ependymomas most frequently originate in the FOURTH VENTRICLE and histologically are densely cellular tumors which may contain ependymal tubules and perivascular pseudorosettes. Spinal ependymomas are usually benign papillary or myxopapillary tumors. (From DeVita et al., Principles and Practice of Oncology, 5th ed, p2018; Escourolle et al., Manual of Basic Neuropathology, 2nd ed, pp28-9) Ependymoma, Myxopapillary,Ependymoma, Papillary,Anaplastic Ependymoma,Cellular Ependymoma,Clear Cell Ependymoma,Papillary Ependymoma,Anaplastic Ependymomas,Ependymoma, Anaplastic,Ependymomas,Ependymomas, Anaplastic,Ependymomas, Myxopapillary,Ependymomas, Papillary,Myxopapillary Ependymoma,Myxopapillary Ependymomas,Papillary Ependymomas
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell

Related Publications

R G Parrish, and R J Kurland, and W W Janese, and L Bakay
November 1972, Research communications in chemical pathology and pharmacology,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
April 1988, Magnetic resonance in medicine,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
January 1986, Magnetic resonance imaging,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
January 1989, Magnetic resonance imaging,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
December 1984, Magnetic resonance in medicine,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
January 1975, Archives of biochemistry and biophysics,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
January 1989, Journal of computer assisted tomography,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
December 2011, Journal of magnetic resonance (San Diego, Calif. : 1997),
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
January 1975, Proceedings of the National Academy of Sciences of the United States of America,
R G Parrish, and R J Kurland, and W W Janese, and L Bakay
January 1987, Magnetic resonance imaging,
Copied contents to your clipboard!