Integrated state of oncornavirus DNA in normal chicken cells and in cells transformed by avian myeloblastosis virus. 1973

P D Markham, and M A Baluda

The covalent linkage of oncornavirus-specific DNA to chicken DNA was investigated in normal chicken embryo fibroblasts (CEF) and in virus-producing leukemic cells transformed by avian myeloblastosis virus (AMV). The virus-specific sequences present in cellular DNA fractionated by different methods were detected by DNA-RNA hybridization by using 70S AMV RNA as a probe. In CEF and in leukemic cells, the viral DNA appeared to be present only in the nucleus. After cesium chloride-ethidium bromide density equilibrium sedimentation, the viral DNA was present as linear, double-stranded molecules not separable from linear chicken DNA. After extraction by the Hirt procedure, the viral DNA precipitated with the high-molecular-weight DNA. After alkaline sucrose velocity sedimentation, the viral DNA cosedimented with the high-molecular-weight cellular DNA. The results indicate that in both types of cells studied, the oncornavirus-specific DNA sequences were linked by alkali stable bonds to nuclear cellular DNA of high molecular weight and did not appear to be present in free form of any size.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009858 Oncogenic Viruses Viruses that produce tumors. Tumor Viruses,Oncogenic Virus,Tumor Virus,Virus, Oncogenic,Virus, Tumor,Viruses, Oncogenic,Viruses, Tumor
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density

Related Publications

P D Markham, and M A Baluda
January 1971, Biochimie,
P D Markham, and M A Baluda
January 1974, Zeitschrift fur Naturforschung. Section C, Biosciences,
P D Markham, and M A Baluda
May 1974, Journal of virology,
P D Markham, and M A Baluda
December 1988, Indian journal of experimental biology,
P D Markham, and M A Baluda
August 1974, Proceedings of the National Academy of Sciences of the United States of America,
P D Markham, and M A Baluda
September 1988, Oncogene research,
Copied contents to your clipboard!