Mechanism of insulin resistance in adipocytes of rats fed a high-fat diet. 1979

M Lavau, and S K Fried, and C Susini, and P Freychet

Insulin's ability to stimulate glucose metabolism is severely diminished in the adipose tissue of rats fed a high-fat diet as compared to that of rats fed a low-fat diet. To elucidate the mechanism for this effect we have measured the binding of insulin, the hormone effect on 2-deoxyglucose uptake and the major pathways of [1-(14)C]glucose metabolism, and the activity of lipogenesis-related enzymes in adipocytes of rats fed a low- or high-fat diet for 7 days. Rats fed high- or low-fat diets bound equal amounts of insulin per adipocyte at all insulin concentrations tested. Basal and maximally insulin-stimulated 2-deoxyglucose uptake per fat cell were reduced in high-fat-fed rats. However, the insulin stimulation over basal was the same in both groups (230%). Submaximal doses of insulin produced equivalent increments of 2-deoxyglucose uptake in both groups, as would be predicted by the binding studies. The effect of both submaximal and maximal insulin concentration on the labeling of CO(2) and fatty acids was markedly decreased by high-fat feeding. The insulin response of the glyceride-glycerol pathway was less severely, though significantly, reduced. Acetyl CoA carboxylase and malic enzyme in adipocytes of high-fat-fed rats were reduced to 13% of the activity in the low-fat-fed rats. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases were decreased to 20% and 34% of their activities in low-fat-fed rats, respectively. These reductions paralleled the changes in insulin-stimulated glucose oxidation and fatty acid synthesis. The data therefore strongly suggest that the blunted response of glucose metabolism to insulin in adipocytes of high-fat-fed rats is a result of a decreased intracellular capacity to utilize glucose for lipogenesis.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty

Related Publications

M Lavau, and S K Fried, and C Susini, and P Freychet
April 1998, Metabolism: clinical and experimental,
M Lavau, and S K Fried, and C Susini, and P Freychet
November 1997, Diabetes,
M Lavau, and S K Fried, and C Susini, and P Freychet
October 2021, Molecules (Basel, Switzerland),
M Lavau, and S K Fried, and C Susini, and P Freychet
September 2008, American journal of physiology. Heart and circulatory physiology,
M Lavau, and S K Fried, and C Susini, and P Freychet
November 2012, Metabolism: clinical and experimental,
M Lavau, and S K Fried, and C Susini, and P Freychet
May 2009, American journal of physiology. Endocrinology and metabolism,
M Lavau, and S K Fried, and C Susini, and P Freychet
December 2010, European journal of pharmacology,
M Lavau, and S K Fried, and C Susini, and P Freychet
December 2013, Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics,
M Lavau, and S K Fried, and C Susini, and P Freychet
January 2008, Metabolism: clinical and experimental,
M Lavau, and S K Fried, and C Susini, and P Freychet
August 1995, Endocrinology,
Copied contents to your clipboard!