Analysis and quantitation of free ceramide containing nonhydroxy and 2-hydroxy fatty acids, and phytosphingosine by high-performance liquid chromatography. 1979

M Iwamori, and C Costello, and H W Moser

Reaction of ceramides containing nonhydroxy fatty acids with benzoyl chloride in pyridine at 70 degrees C for 1 hr resulted in N-benzoylation to form N,N-acyl,benzoyl derivatives; O-benzoylation also occurred. However with ceramides containing 2-hydroxy fatty acids and phytosphingosine only O-benzoylation occurred even on prolonged treatment. Only O-benzoylation occurred on reaction with benzoic an hydride. However, the benzoylation of ceramides with phytosphingosine could not be achieved with benzoic anhydride and this benzoylation was performed by reaction with benzoyl chloride at 70 degrees C for 4 hr. Because N,N-acyl,benzoyl derivatives of ceramides containing nonhydroxy fatty acids produced by treatment with benzoyl chloride overlap methyl benzoate on high-performance liquid chromatography, benzoic anhydride was preferable for benzoylation of ceramides with nonhydroxy and 2-hydroxy fatty acids. On the other hand, the reaction with benzoyl chloride at 70 degrees C for 4 hr was used for quantitation of benzoylated ceramides containing 2-hydroxy fatty acids and phytosphingosine. 3-(p-Phenylbenzoyl)estrone was used as an internal standard for both reactions and values for ceramides containing 2-hydroxy fatty acids obtained by the two reactions were in good agreement. This procedure was applied to measurement of the ceramide levels in the brain, liver, and kidney of rats during development. The levels of ceramides containing nonhydroxy and 2-hydroxy fatty acids in the brain, liver, and kidney increased to the adult levels and then remained unchanged. Ceramide with phytosphingosine was detected in the liver and kidney, where its concentration gradually increased with age, but it was not found in the brain. The composition of nonhydroxy fatty acids were also analyzed.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003124 Colorimetry Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006880 Hydroxy Acids Organic compounds containing both the hydroxyl and carboxyl radicals. Hydroxy Acid,Acid, Hydroxy,Acids, Hydroxy
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

M Iwamori, and C Costello, and H W Moser
March 1986, Journal of chromatography,
M Iwamori, and C Costello, and H W Moser
November 1998, Journal of chromatography. B, Biomedical sciences and applications,
M Iwamori, and C Costello, and H W Moser
April 1990, Journal of chromatography,
M Iwamori, and C Costello, and H W Moser
July 1992, Journal of chromatography,
M Iwamori, and C Costello, and H W Moser
December 1993, Journal of chromatography,
M Iwamori, and C Costello, and H W Moser
February 1986, Clinica chimica acta; international journal of clinical chemistry,
M Iwamori, and C Costello, and H W Moser
March 1964, Analytical biochemistry,
M Iwamori, and C Costello, and H W Moser
January 1996, Analytical biochemistry,
Copied contents to your clipboard!