Effects of osmolality, bicarbonate and buffer on the metabolism and motility of testicular, epididymal and ejaculated spermatozoa of boars. 1979

J L Dacheux, and T O'Shea, and M Paquignon

Spermatozoa were collected from the rete testis of conscious boars, from the cauda epididymidis by retro-flushing, and by ejaculation. Testicular spermatozoa showed no progressive motility, and that of ejaculated was greater than that of epididymal spermatozoa. Glycolysis and respiration of testicular spermatozoa, while lower than that of the more mature cells, were only slightly affected by the incubation conditions. Epididymal spermatozoa converted 83% of the glucose they utilized to CO2 or lactate, but testicular cells converted only 35% to these metabolites. Synthesis of lipid was greatest by testicular spermatozoa. With the more mature cells hyperosmolar conditions depressed CO2 production, but increased lactate production, and these changes were greater for ejaculated than for epididymal spermatozoa. Glycolysis plus respiration of these cells was related to their motility. These results were interpreted as showing increasing motility, glycolysis and respiration with maturation, but also decreased synthetic capacity and increased sensitivity to the environment.

UI MeSH Term Description Entries
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D013079 Sperm Maturation The maturing process of SPERMATOZOA after leaving the testicular SEMINIFEROUS TUBULES. Maturation in SPERM MOTILITY and FERTILITY takes place in the EPIDIDYMIS as the sperm migrate from caput epididymis to cauda epididymis. Maturation of Spermatozoa,Maturation, Sperm,Spermatozoa Maturation
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

J L Dacheux, and T O'Shea, and M Paquignon
February 1968, Australian journal of biological sciences,
J L Dacheux, and T O'Shea, and M Paquignon
May 1967, Investigative urology,
J L Dacheux, and T O'Shea, and M Paquignon
October 1964, Journal of reproduction and fertility,
J L Dacheux, and T O'Shea, and M Paquignon
May 1978, Fertility and sterility,
J L Dacheux, and T O'Shea, and M Paquignon
November 1987, Biology of reproduction,
J L Dacheux, and T O'Shea, and M Paquignon
January 2001, Human reproduction (Oxford, England),
J L Dacheux, and T O'Shea, and M Paquignon
November 1976, Journal of reproduction and fertility,
J L Dacheux, and T O'Shea, and M Paquignon
March 1969, Journal of reproduction and fertility,
Copied contents to your clipboard!