Erythritol metabolism in wild-type and mutant strains of Schizophyllum commune. 1969

M L Braun, and D J Niederpruem

Erythritol uptake and metabolism were compared in wild-type mycelium and a dome morphological mutant of the wood-rotting mushroom Schizophyllum commune. Wild-type mycelium utilized glucose, certain hexitols, and pentitols including ribitol, as well as d-erythrose, erythritol, and glycerol as sole carbon sources for growth. The dome mutant utilized all of these compounds except d-erythrose and erythritol. Erythritol- or glycerol-grown wild-type mycelium incorporated erythritol into various cellular constituents, whereas glucose-grown cells lagged considerably before initiation of erythritol uptake. This acquisition was inhibited by cycloheximide. Dome mycelium showed behavior similar to wild-type in uptake of erythritol after growth on glucose or glycerol, except that erythritol was not further catabolized. Enzymes of carbohydrate metabolism were compared in cell extracts of glucose-cultured wild-type mycelium and dome. Enzymes of hexose monophosphate catabolism, nicotinamide adenine dinucleotide (NAD)-dependent sugar alcohol dehydrogenases, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-coupled erythrose reductase were demonstrated in both. The occurrence of erythrose reductase was unaffected by the nature of the growth carbon source, showed optimal activity at pH 7, and generated NAD phosphate and erythritol as products of the reaction. Glycerol-, d-erythrose-, or erythritol-grown wild-type mycelium contained an NAD-dependent erythritol dehydrogenase absent in glucose cells. Erythritol dehydrogenase activity was optimal at pH 8.8 and produced erythrulose during NAD reduction. Glycerol-growth of dome mycelium induced the erythritol uptake system, but a functional erythritol dehydrogenase could not be demonstrated. Neither wild-type nor dome mycelium produced erythritol dehydrogenase during growth on ribitol. Erythritol metabolism in wild-type cells of S. commune, therefore, involves an NADPH-dependent reduction of d-erythrose to produce erythritol, followed by induction of an NAD-coupled erythritol dehydrogenase to form erythrulose. A deficiency in erythritol dehydrogenase rather than permeability barriers explains why dome cannot employ erythritol as sole carbon source for mycelial growth.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004896 Erythritol A four-carbon sugar that is found in algae, fungi, and lichens. It is twice as sweet as sucrose and can be used as a coronary vasodilator.
D000438 Alcohols Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
D001487 Basidiomycota A phylum of fungi that produce their sexual spores (basidiospores) on the outside of the basidium. It includes forms commonly known as mushrooms, boletes, puffballs, earthstars, stinkhorns, bird's-nest fungi, jelly fungi, bracket or shelf fungi, and rust and smut fungi. Basidiomycetes,Basidiomycete,Basidiomycotas

Related Publications

M L Braun, and D J Niederpruem
May 1978, Mutation research,
M L Braun, and D J Niederpruem
February 1967, Archiv fur Mikrobiologie,
M L Braun, and D J Niederpruem
June 1976, Journal of general microbiology,
M L Braun, and D J Niederpruem
January 1978, Folia microbiologica,
M L Braun, and D J Niederpruem
May 1969, Journal of cell science,
M L Braun, and D J Niederpruem
January 1983, Molecular and cellular biochemistry,
M L Braun, and D J Niederpruem
December 1972, The Journal of vitaminology,
M L Braun, and D J Niederpruem
April 1965, Journal of bacteriology,
Copied contents to your clipboard!