A microperfusion study of phosphate reabsorption by the rat proximal renal tubule. Effect of parathyroid hormone. 1974

N Bank, and H S Aynedjian, and S W Weinstein

To study the mechanism of phsophate reabsorption by the proximal tubule and the effect of parathyroid hormone (PTH), microperfusion experiments were carried out in rats. Segments of proximal tubule isolated by oil blocks were perfused in vivo with one of three solutions, each containing 152 meq/liter Na(+) and 2 mmol/liter phosphate, but otherwise differing in composition. The pH of solution 1 was 6.05-6.63, indicating that 60-85% of the phosphate was in the form of H(2)PO(4) (-). The pH of solution 2 was 7.56-7.85, and 85-92% of the phosphate was in the form of HPO(4) (=). Solution 3 contained HCO(3) (-) and glucose and had a pH of 7.50-7.65. When the proximal tubules were perfused with solution 1, the (32)P concentration in the collected perfusate was found to be consistently lower than in the initial perfusion solution. In sharp contrast, when the tubules were perfused with solutions 2 or 3, (32)P concentration usually rose above that in the initial solution. Water (and persumably Na(+)) reabsorption, as measured with [(3)H]inulin, was the same with the acid and alkaline solutions. Administration of partially purified PTH clearly prevented the fall in phosphate concentration with the acid solution, but had a less discernible effect on phosphate reabsorption with the two alkaline solutions. Measurements of pH within the perfused segments with antimony microelectrodes demonstrated that PTH enhanced alkalinization of the acid perfusion solution. The findings are consistent with the view that H(2)PO(4) (-) is reabsorbed preferentially over HPO(4) (=). This can be attributed to either an active transport mechanism for H(2)PO(4) (-) or selective membrane permeability to this anion. PTH appears to either inhibit an active transport process for H(2)PO(4) (-), or to interfere with passive diffusion of phosphate by alkalinizing the tubular lumen.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.

Related Publications

N Bank, and H S Aynedjian, and S W Weinstein
November 1975, The American journal of physiology,
N Bank, and H S Aynedjian, and S W Weinstein
July 1981, The Journal of physiology,
N Bank, and H S Aynedjian, and S W Weinstein
January 2000, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
N Bank, and H S Aynedjian, and S W Weinstein
August 1962, The American journal of orthopedics,
N Bank, and H S Aynedjian, and S W Weinstein
November 1994, The American journal of physiology,
N Bank, and H S Aynedjian, and S W Weinstein
October 1978, The American journal of physiology,
N Bank, and H S Aynedjian, and S W Weinstein
January 1984, Advances in experimental medicine and biology,
N Bank, and H S Aynedjian, and S W Weinstein
November 1977, Clinical science and molecular medicine,
Copied contents to your clipboard!