Sodium in renal tubular acidification kinetics. 1979

M de Mello Aires, and G Malnic

Renal proximal tubules and their peritubular capillaries were perfused with mammalian Ringer solutions containing different sodium concentrations. In stop-flow microperfusion experiments, the pH was measured by means of antimony microelectrodes, permitting calculation of rates of H ion secretion and bicarbonate reabsorption. These rates, as well as transepithelial pH and bicarbonate gradients, were significantly reduced at ambient concentrations of 20 and 4 meq/liter Na+. However, even at the lowest sodium concentrations (4 meq/liter), H ion secretion was still 74%, and bicarbonate reabsorption of 64% of control rates. In similar conditions, sodium reabsorption as measured by the split-droplet technique fell to practically zero. Ouabain, 10(-3) M, in capillaries reduced bicarbonate reabsorption by 31%, and 3 X 10(-4) M furosemide in lumen and capillaries reduced acidification by 29%. At pH 8--9 in capillaries, sodium transport was normal while acidification was markedly reduced. These data show that low sodium levels impair renal tubular acidification, but they do not support a rigid coupling of these transport processes.

UI MeSH Term Description Entries
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

M de Mello Aires, and G Malnic
January 1989, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
M de Mello Aires, and G Malnic
January 1984, Medicina,
M de Mello Aires, and G Malnic
September 1986, Klinische Wochenschrift,
M de Mello Aires, and G Malnic
June 1970, JAMA,
M de Mello Aires, and G Malnic
January 2002, Journal of nephrology,
M de Mello Aires, and G Malnic
June 1977, The Journal of physiology,
M de Mello Aires, and G Malnic
January 1952, The American journal of physiology,
M de Mello Aires, and G Malnic
April 1980, Medicina clinica,
Copied contents to your clipboard!