Connection between the rate of cooling and fluorescence properties at 77 K or isolated chloroplasts. 1979

G Harnischfeger

Cooling of chloroplasts to--196 degrees C can under certain circumstances lead to an erroneous analysis of energy distribution. After minimizing influences of sample geometry and effects of plastid concentration it is shown that externally induced membrane change leads to an increase in the ratio F740/F687 of the fluorescence emission spectrum. Similar alterations can be observed by variation of the rate of cooling the plastids to 77 K, expecially if whole chloroplasts are used. The differences in emission ratios are indicative also of changes in initial energy distribution between the photosystems, given here by the value alphaN. This is inferred from experiments with either osmotically induced thylakoid disturbances or those effected through a slow cooling process. The circumstances and the significance of these observations are discussed.

UI MeSH Term Description Entries
D007038 Hypotonic Solutions Solutions that have a lesser osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Solutions, Hypotonic
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting

Related Publications

G Harnischfeger
November 1977, Biochimica et biophysica acta,
G Harnischfeger
January 1985, Nucleic acids symposium series,
G Harnischfeger
May 1970, Doklady Akademii nauk SSSR,
G Harnischfeger
September 1980, Biochimica et biophysica acta,
G Harnischfeger
January 1970, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Copied contents to your clipboard!