Operant conditioning of vertical eye movements without visual feedback in the midpontine pretrigeminal cat. 1979

S Ikegami, and S Nishioka, and H Kawamura

An operant conditioning of vertical eye movements was achieved in the midpontine pretrigeminal cat in total darkness by contingent reinforcement of spontaneous eye movements with lateral hypothalamic (LHT) reward stimulation, when each movement (upward direction was chosen in this experiment) exceeded a preset amplitude. However, the response rates in the dark were lower than those in the light and the time to reach the peak response rate was much longer. Recording of evoked potentials to optic chiasma (OC) stimulation revealed enhancement of late components of the visual cortex (VC) and superior colliculus (SC) responses in relation to eye movements. Sequential records of the averaged evoked responses associated with eye movements indicated that the amplitudes of the late components of the VC and SC waves gradually increased in the course of establishment of the operant conditioning, and decreased gradually during extinction. In a yoked control test, increase in amplitudes of the late components was much less significant during non-contingent reinforcement given independently of the eye movements. These results suggest that 'corollary discharge' may play a critical role as a cue in acquisition of the operant conditioning of vertical eye movements when visual feedback is absent in total darkness.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D003624 Darkness The absence of light. Darknesses
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

S Ikegami, and S Nishioka, and H Kawamura
January 1962, Archives italiennes de biologie,
S Ikegami, and S Nishioka, and H Kawamura
January 1963, Acta biologiae experimentalis,
S Ikegami, and S Nishioka, and H Kawamura
March 1972, Brain research,
S Ikegami, and S Nishioka, and H Kawamura
April 1963, Archives italiennes de biologie,
S Ikegami, and S Nishioka, and H Kawamura
January 1962, Archives italiennes de biologie,
S Ikegami, and S Nishioka, and H Kawamura
January 1967, Acta biologiae experimentalis,
S Ikegami, and S Nishioka, and H Kawamura
January 1965, Bulletin de l'Academie polonaise des sciences. Serie des sciences biologiques,
S Ikegami, and S Nishioka, and H Kawamura
October 1963, Archives italiennes de biologie,
S Ikegami, and S Nishioka, and H Kawamura
January 1978, Acta neurobiologiae experimentalis,
S Ikegami, and S Nishioka, and H Kawamura
January 1985, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!