Characterization of the isoenzymes of pig-liver esterase. 1. Chemical Studies. 1979

E Heymann, and W Junge

Three different subunits of highly purified pig liver esterase (EC 3.1.1.1) can be separated by analytical dodecyl sulfate electrophoresis, though their relative mobilities are very similar. The same subunit bands are obtained with microsomes, in which the esterases have been labeled with the specific active-site-directed inhibitor bis(4-nitro-[14C]phenyl)phosphate. The heterogeneity of the native trimeric enzyme is much more complex, as is demonstrated by isoelectric focussing and polyacrylamide gel electrophoresis. Fractions of esterase which were partially separated by preparative isoelectric focussing show differences in their subunit composition, their amino acid analyses, their tryptic peptide maps, and their C-terminal amino acids. From these experiments various features of the differing esterase subunits can be deduced. Based on the chemical results and on various experiments which did not indicate any secondary modification of the protein side-chains, the molecular basis of the esterase heterogeneity is discussed. We conclude that the native trimeric esterase is a mixture of numerous hybrids of at least three protein subunits with differing but closely related primary sequences. A comparison of the relative specificity of various preparations of pig liver microsomes indicates that genetic differences concerning the composition of liver esterase exist between individuals.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

E Heymann, and W Junge
January 2007, Angewandte Chemie (International ed. in English),
E Heymann, and W Junge
February 1969, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
E Heymann, and W Junge
March 1969, Wakayama medical reports,
E Heymann, and W Junge
August 2001, Chembiochem : a European journal of chemical biology,
E Heymann, and W Junge
January 1973, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
E Heymann, and W Junge
October 1969, Biochemistry,
Copied contents to your clipboard!