Suprathreshold spatial frequency detection and binocular interaction in strabismic and anisometropic amblyopia. 1979

D M Levi, and R S Harwerth, and R E Manny

We have investigated suprathreshold contrast sensitivity and binocular interactions in strabismic and anisometropic amblyopes using a reaction time paradigm. For every spatial frequency, reaction time increased as the grating contrast decreased. At all spatial frequencies and contrast values the reaction times using the amblyopic eye were prolonged compared to the nonamblyopic eye, but most markedly at high spatial frequencies. In the middle range of spatial frequencies, the contrast vs. reaction time function for the nonamblyopic eyes was biphasic, suggesting that two separate mechanisms detect gratings at high and low contrast levels. These functions in deep amblyopia were monotonic, and in shallow amblyopia the break in the functions was present but shifted to lower contrast levels. Binocular interaction experiments showed that binocular summation was absent at all contrast levels, but binocular occlusion was evident at high contrast levels for amblyopic observers.

UI MeSH Term Description Entries
D008297 Male Males
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012030 Refractive Errors Deviations from the average or standard indices of refraction of the eye through its dioptric or refractive apparatus. Ametropia,Refractive Disorders,Ametropias,Disorder, Refractive,Disorders, Refractive,Error, Refractive,Errors, Refractive,Refractive Disorder,Refractive Error
D003867 Depth Perception Perception of three-dimensionality. Stereopsis,Stereoscopic Vision,Depth Perceptions,Perception, Depth,Perceptions, Depth,Stereopses,Stereoscopic Visions,Vision, Stereoscopic,Visions, Stereoscopic
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000550 Amblyopia A nonspecific term referring to impaired vision. Major subcategories include stimulus deprivation-induced amblyopia and toxic amblyopia. Stimulus deprivation-induced amblyopia is a developmental disorder of the visual cortex. A discrepancy between visual information received by the visual cortex from each eye results in abnormal cortical development. STRABISMUS and REFRACTIVE ERRORS may cause this condition. Toxic amblyopia is a disorder of the OPTIC NERVE which is associated with ALCOHOLISM, tobacco SMOKING, and other toxins and as an adverse effect of the use of some medications. Anisometropic Amblyopia,Lazy Eye,Amblyopia, Developmental,Amblyopia, Stimulus Deprivation-Induced,Amblyopia, Suppression,Stimulus Deprivation-Induced Amblyopia,Amblyopia, Anisometropic,Amblyopia, Stimulus Deprivation Induced,Amblyopias,Amblyopias, Anisometropic,Amblyopias, Developmental,Amblyopias, Stimulus Deprivation-Induced,Amblyopias, Suppression,Anisometropic Amblyopias,Deprivation-Induced Amblyopia, Stimulus,Deprivation-Induced Amblyopias, Stimulus,Developmental Amblyopia,Developmental Amblyopias,Eye, Lazy,Eyes, Lazy,Lazy Eyes,Stimulus Deprivation Induced Amblyopia,Stimulus Deprivation-Induced Amblyopias,Suppression Amblyopia,Suppression Amblyopias
D013285 Strabismus Misalignment of the visual axes of the eyes. In comitant strabismus the degree of ocular misalignment does not vary with the direction of gaze. In noncomitant strabismus the degree of misalignment varies depending on direction of gaze or which eye is fixating on the target. (Miller, Walsh & Hoyt's Clinical Neuro-Ophthalmology, 4th ed, p641) Concomitant Strabismus,Dissociated Horizontal Deviation,Dissociated Vertical Deviation,Heterophoria,Heterotropias,Hypertropia,Non-Concomitant Strabismus,Nonconcomitant Strabismus,Phorias,Squint,Strabismus, Comitant,Strabismus, Noncomitant,Convergent Comitant Strabismus,Mechanical Strabismus,Comitant Strabismus,Comitant Strabismus, Convergent,Deviation, Dissociated Horizontal,Dissociated Horizontal Deviations,Dissociated Vertical Deviations,Heterophorias,Heterotropia,Horizontal Deviation, Dissociated,Hypertropias,Non Concomitant Strabismus,Noncomitant Strabismus,Phoria,Strabismus, Concomitant,Strabismus, Convergent Comitant,Strabismus, Mechanical,Strabismus, Non-Concomitant,Strabismus, Nonconcomitant

Related Publications

D M Levi, and R S Harwerth, and R E Manny
April 1987, Applied optics,
D M Levi, and R S Harwerth, and R E Manny
April 2024, Investigative ophthalmology & visual science,
D M Levi, and R S Harwerth, and R E Manny
June 2006, Archives of ophthalmology (Chicago, Ill. : 1960),
D M Levi, and R S Harwerth, and R E Manny
January 1981, Vision research,
D M Levi, and R S Harwerth, and R E Manny
March 2018, Scientific reports,
D M Levi, and R S Harwerth, and R E Manny
July 1981, American journal of optometry and physiological optics,
D M Levi, and R S Harwerth, and R E Manny
January 2012, Ophthalmology,
D M Levi, and R S Harwerth, and R E Manny
January 1997, Klinika oczna,
D M Levi, and R S Harwerth, and R E Manny
March 2009, Journal of vision,
D M Levi, and R S Harwerth, and R E Manny
March 2011, Vision research,
Copied contents to your clipboard!