Ca2+ bindings of pig cardiac myosin, subfragment-1, and g2 light chain. 1979

H Kuwayama, and K Yagi

Ca2+ binding to pig cardiac myosin, subfragment-1 (S-1), and g2 light chain were investigated by the equilibrium dialysis method. Two different S-1s, one of which can bind Ca2+ and another which cannot, were prepared. In order to calculate the free Ca2+ concentrations adequately, the amounts of Ca2+ included in various chemicals and proteins were measured by atomic absorption spectroscopy. Ca2+ contamination was greatest in KCl among the chemicals tested. In addition, the Ca2+ strongly bound to myosin and S-1 was released in the presence of Mg2+. When Mg2+ was not added, the Ca2+-binding constant of myosin was 4 x 10(5) M-1 and the maximum binding number was 1.8 mol per mol of myosin. Cooperativity between the 2 Ca2+ bindings could not be demonstrated. Mg2+ strongly inhibited the Ca2+ binding: at a free Ca2+ concentration of 1 x 10(-5) M, 1.3 mol Ca2+ was bound to myosin in the absence of Mg2+, but 0.6 and 0.2 mol were bound in the presence of 0.3 and 4.5 mM Mg2+, respectively. The Ca2+-binding constant of S-1, which contained a 15,000 dalton component, was 8.6 x 10(5) M-1, and the maximum binding number was 0.7 mol per mol of S-1. The 15,000 dalton component could be exchanged with extraneous g2. S-1 which lacked the 15,000 component could not bind Ca2+ at free Ca2+ concentrations less than 0.1 mM. The Ca2+ binding to free g2 light chain was about 100 times weaker than the binding to myosin, as indicated previously for skeletal myosin (Okamoto, Y. & Yagi, K. (1976) J. Biochem. 80, 111--120). The Ca2+-binding constant was obtained as 4.1 x 10(3) M-1 in the absence of added Mg2+. Phosphorylation of g2 light chain did not affect the Ca2+ binding to the free g2 light chain or to myosin. Ca2+ binding to cardiac native tropomyosin was also measured.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

H Kuwayama, and K Yagi
September 1984, The Journal of biological chemistry,
H Kuwayama, and K Yagi
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
H Kuwayama, and K Yagi
January 1976, Advances in biophysics,
H Kuwayama, and K Yagi
November 1997, Circulation research,
Copied contents to your clipboard!