| D007425 |
Intracellular Membranes |
Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. |
Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular |
|
| D007700 |
Kinetics |
The rate dynamics in chemical or physical systems. |
|
|
| D008563 |
Membrane Lipids |
Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. |
Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell |
|
| D008823 |
Micelles |
Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. |
Micelle |
|
| D008930 |
Mitochondria, Liver |
Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) |
Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver |
|
| D010743 |
Phospholipids |
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. |
Phosphatides,Phospholipid |
|
| D005992 |
Glycerol-3-Phosphate O-Acyltransferase |
An enzyme that transfers acyl groups from acyl-CoA to glycerol-3-phosphate to form monoglyceride phosphates. It acts only with CoA derivatives of fatty acids of chain length above C-10. Also forms diglyceride phosphates. EC 2.3.1.15. |
Glycerolphosphate Acyltransferase,Stearyl-CoA Glycerophosphate Transstearylase,Acyl-CoA Sn-Glycerol-3-Phosphate-O-Acyltransferase,Glycerophosphate Acyltransferase,Acyl CoA Sn Glycerol 3 Phosphate O Acyltransferase,Acyltransferase, Glycerolphosphate,Acyltransferase, Glycerophosphate,Glycerol 3 Phosphate O Acyltransferase,Glycerophosphate Transstearylase, Stearyl-CoA,O-Acyltransferase, Glycerol-3-Phosphate,Sn-Glycerol-3-Phosphate-O-Acyltransferase, Acyl-CoA,Stearyl CoA Glycerophosphate Transstearylase,Transstearylase, Stearyl-CoA Glycerophosphate |
|
| D000217 |
Acyltransferases |
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. |
Acyltransferase |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013379 |
Substrate Specificity |
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. |
Specificities, Substrate,Specificity, Substrate,Substrate Specificities |
|