Biosynthesis of N-glycosidically linked glycoproteins during gastrulation of sea urchin embryos. 1979

A Heifetz, and W J Lennarz

Embryos of the sea urchin, Stronglyocentrotus purpuratus, synthesize several classes of sulfated and non-sulfated glycoproteins during gastrulation. The antibiotic tunicamycin, which is a specific inhibitor of the N-glycosylation of proteins, inhibits the synthesis of lipid-linked oligosaccharides in these embryos at concentrations which have little effect on the biosynthesis of other classes of glycolipids or on protein synthesis. As a consequence of this inhibition, glycoproteins with oligosaccharide side chains of the general type (Man)5-7-(GlcNAc)2 are not synthesized. In addition, the biosynthesis of a novel class of sulfated glycoproteins is inhibited. In contrast, no effect upon the synthesis of sulfated glycosaminoglycans is seen. The morphogenetic consequence of tunicamycin treatment is that development of embryos from the mesenchyme blastula to the gastrula stage is arrested. The results provide evidence that during development glycoproteins containing both unsulfated and sulfated N-glycosidically linked oligosaccharide chains are synthesized via the lipid-linked pathway. The biosynthesis of these molecules appears to be a prerequisite to the differentiation and morphogenesis that occurs during gastrulation.

UI MeSH Term Description Entries
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005260 Female Females
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D014415 Tunicamycin An N-acetylglycosamine containing antiviral antibiotic obtained from Streptomyces lysosuperificus. It is also active against some bacteria and fungi, because it inhibits the glucosylation of proteins. Tunicamycin is used as tool in the study of microbial biosynthetic mechanisms.

Related Publications

A Heifetz, and W J Lennarz
August 1995, Development (Cambridge, England),
A Heifetz, and W J Lennarz
December 2023, Developmental dynamics : an official publication of the American Association of Anatomists,
A Heifetz, and W J Lennarz
January 2020, Current topics in developmental biology,
A Heifetz, and W J Lennarz
January 1986, Cell differentiation,
A Heifetz, and W J Lennarz
November 1998, Developmental biology,
A Heifetz, and W J Lennarz
November 1990, Developmental biology,
A Heifetz, and W J Lennarz
January 1992, Development (Cambridge, England). Supplement,
Copied contents to your clipboard!