Association of poly(adenosine diphosphoribose) synthesis with DNA damage and repair in normal human lymphocytes. 1979

N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara

A permeable cell technique was used to measure the alterations in synthesis of DNA and poly-(adenosine diphosphoribose) in normal human lymphocytes after treatment of the cells with different types of DNA-damaging agents. The lymphocytes showed an abrupt increase in the unscheduled synthesis of DNA and poly(adenosine diphosphoribose) in response to ultraviolet (UV) irradiation. The increases were apparent within 1 h and reached a maximum between 2 and 4 h after irradiation. The magnitude of the increases in DNA and poly(adenosine diphosphoribose) synthesis was dependent upon the UV dose. Alkaline CsCl gradient studies, with bromodeoxyuridine triphosphate density labeling of DNA, demonstrated that the unscheduled DNA synthesis, which occurred in response to UV irradiation, was actually a result of the repair mode of DNA synthesis. Similar increases in DNA synthesis, and poly(adenosine diphosphoribose) synthesis occurred when lymphocytes were treated with several other DNA-damaging agents, including bleomycin, N-methyl-N'-nitro-N-nitrosoguanidine or N-acetoxyacetyl aminofluorene. Treatment of lymphocytes with DNase, under conditions which allowed degradation of cellular DNA, also resulted in increased synthesis of poly(adenosine diphosphoribose). Cycloheximide did not inhibit the increase in synthesis of DNA or poly(adenosine diphosphoribose) that occurred in response to treatment with the DNA-damaging agents.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009702 Nucleoside Diphosphate Sugars Diphosphate Sugars, Nucleoside,Sugars, Nucleoside Diphosphate
D011064 Poly Adenosine Diphosphate Ribose A polynucleotide formed from the ADP-RIBOSE moiety of nicotinamide-adenine dinucleotide (NAD) by POLY(ADP-RIBOSE) POLYMERASES. Poly ADP Ribose,Poly(ADP-Ribose),Poly-ADPR,Poly-Adenosine Diphosphate-Ribose,ADP Ribose, Poly,Diphosphate-Ribose, Poly-Adenosine,Poly ADPR,Ribose, Poly ADP
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
June 1978, Biochimica et biophysica acta,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
July 1976, Biochemical and biophysical research communications,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
February 1995, Clinical cancer research : an official journal of the American Association for Cancer Research,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
January 1990, Mutation research,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
February 1982, Biochemical and biophysical research communications,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
April 1982, Journal of cell science,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
May 1982, International journal of radiation biology and related studies in physics, chemistry, and medicine,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
November 1977, Nucleic acids research,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
June 1974, Arzneimittel-Forschung,
N A Berger, and G W Sikorski, and S J Petzold, and K K Kurohara
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!