Inhibition of intrapituitary thyroxine to 3.5.3'-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. 1979

P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard

Iopanoic acid has been shown to block thyroxine (T4)-5'-monodeiodination in rat anterior pituitary in vitro. To test the hypothesis that the acute decrease in thyrotropin (TSH) after infusion of T4 into hypothyroid rats requires intrapituitary T4 to 3,5,3'-triiodothyroxine (T3) conversion, the effect of iopanoic acid treatment on the generation of nuclear T3 from intrapituitary conversion and the response to TSH were compared in control and iopanoic acid-treated animals. 5 mg/100 g body weight iopanoic acid given 24, 16, and 1.5 h before administration of 125I-T4 reduced the quantity of pituitary nuclear 125I-T3 from local (intrapituitary) T4 to T3 conversion by 60-100%. In association with inhibition of intrapituitary T4 to T3 conversion, there was an increase in the binding of 125I-T4 to the nuclear receptor of the pituitary but the total iodothyronine content of the nuclei was still less than half of the nuclear iodothyronine in control animals. Iopanoic acid did not affect the nuclear/plasma ratio of injected 131I-T3 in the same animals, but did appear to impair 131I-T3 clearance or reduce its distribution volume. Treatment with iopanoic acid did not reduce the quantity of nuclear 125I-T3 in the liver, kidney, or heart of the same animals more than expected from the changes in serum 125I-T3. In control hypo-thyroid animals pretreated with iopanoic acid, the mean TSH was not significantly decreased from the initial value by T4 injection. Iopanoic acid pretreatment did not interfere with the acute TSH response of chronically hypothyroid rats to 70 ng of T3/100 g body weight. These results establish that intrapituitary generations of T3 from T4 is required for the acute decrease in TSH which occurs after T4 infusion. The data also are consistent with the content that it is nuclear binding of the T3 generated from T4 which initiates the inhibition of TSH release.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007480 Iopanoic Acid Radiopaque medium used as diagnostic aid. Iodopanoic Acid,Cholevid,Iopagnost,Polognost,Telepaque,Acid, Iodopanoic,Acid, Iopanoic
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4

Related Publications

P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
October 1992, Neuroendocrinology,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
March 1981, Endocrinology,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
September 2005, European journal of endocrinology,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
August 1981, Endocrinologia japonica,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
April 1978, Journal of endocrinological investigation,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
November 1987, Acta endocrinologica,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
September 1980, British medical journal,
P R Larsen, and T E Dick, and B P Markovitz, and M M Kaplan, and T G Gard
September 1977, Endocrinology,
Copied contents to your clipboard!