Interactions of C-reactive protein and complement with liposomes. II. Influence of membrane composition. 1979

R L Richards, and H Gewurz, and J Siegel, and C R Alving

We found previoulsy that interaction of C-reactive protein (CRP) with liposomal model membranes resulted in complement(C)-dependent membrane damage. In the present study, we investigated the influence of membrane composition on the interactions of CRP and C with liposomes. Adsorption experiments showed that binding of CRP was greatest to strongly positive liposomes. A lesser, but still substantial, extent of CRP binding also was observed with negative liposomes, but negligible amounts of CRP bound to neutral or weakly positive liposomes. CRP-mediated consumption of hemolytic C, and C-dependent glucose release from liposomes both were strongly influenced by liposomal charge, positive being superior to negative. Glucose release and, to a lesser extent, consumption of hemolytic C were inversely related to phospholipid fatty acyl chain length. Phospholipid fatty acyl unsaturation and liposomal cholesterol concentration both had strong influences on C consumption and glucose release. The data suggest that CRP-mediated C consumption and membrane damage require an optimum membrane fluidity. Complement damage in the presence of CRP was enhanced by certain sphingolipids and also by digalactosyl diglyceride, but not by sphingomyelin. Our results thus demonstrate that CRP-mediated C consumption and C-dependent membrane damage both are influenced by the liposomal membrane composition.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002097 C-Reactive Protein A plasma protein that circulates in increased amounts during inflammation and after tissue damage. C-Reactive Protein measured by more sensitive methods often for coronary heart disease risk assessment is referred to as High Sensitivity C-Reactive Protein (hs-CRP). High Sensitivity C-Reactive Protein,hs-CRP,hsCRP,C Reactive Protein,High Sensitivity C Reactive Protein
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D005699 Galactosylceramides Cerebrosides which contain as their polar head group a galactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in beta-galactosidase, is the cause of galactosylceramide lipidosis or globoid cell leukodystrophy. Galactocerebrosides,Galactosyl Ceramide,Galactosyl Ceramides,Galactosylceramide,Ceramide, Galactosyl,Ceramides, Galactosyl
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions

Related Publications

R L Richards, and H Gewurz, and J Siegel, and C R Alving
July 1984, Sheng li ke xue jin zhan [Progress in physiology],
R L Richards, and H Gewurz, and J Siegel, and C R Alving
July 1977, Journal of immunology (Baltimore, Md. : 1950),
R L Richards, and H Gewurz, and J Siegel, and C R Alving
May 2007, Immunology,
R L Richards, and H Gewurz, and J Siegel, and C R Alving
November 1975, The Journal of experimental medicine,
R L Richards, and H Gewurz, and J Siegel, and C R Alving
May 1983, Molecular immunology,
R L Richards, and H Gewurz, and J Siegel, and C R Alving
August 2010, Biochemical Society transactions,
R L Richards, and H Gewurz, and J Siegel, and C R Alving
November 1981, Journal of biochemistry,
R L Richards, and H Gewurz, and J Siegel, and C R Alving
September 1974, The Journal of experimental medicine,
R L Richards, and H Gewurz, and J Siegel, and C R Alving
June 2008, Biointerphases,
Copied contents to your clipboard!