Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism. 1979

L Reuss, and E Bello-Reuss, and T P Grady

Net fluid transport (Jv) and electrical properties of the cell membranes and paracellular pathway of Necturus gallbladder epithelium were studied before and after the addition of ouabain (10(-4) M) to the serosal bathing medium. The glycoside inhibited Jv by 70% in 15 min and by 100% in 30 min. In contrast, the potentials across both cell membranes did not decrease significantly until 20 min of exposure to ouabain. At 30 min, the basolateral membrane potential (Vcs) fell only by ca 7 mV. If basolateral Na transport were electrogenic, with a coupling ratio (Na:K) of 3:2, the reductions of Vcs at 15 and 30 min should be 12--15 and 17--21 mV, respectively. Thus, we conclude that the mechanism of Na transport from the cells to the serosal bathing solution is not electrogenic under normal transport conditions. The slow depolarization observed in ouabain is caused by a fall of intracellular K concentration, and by a decrease in basolateral cell membrane K permeability. Prolonged exposure to ouabain results also in an increase in paracellular K selectivity, with no change of P Na/P Cl.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D014562 Urodela An order of the Amphibia class which includes salamanders and newts. They are characterized by usually having slim bodies and tails, four limbs of about equal size (except in Sirenidae), and a reduction in skull bones. Amphiuma,Caudata,Eel, Congo,Salamanders,Congo Eel,Congo Eels,Eels, Congo,Salamander

Related Publications

L Reuss, and E Bello-Reuss, and T P Grady
January 1981, The Journal of membrane biology,
L Reuss, and E Bello-Reuss, and T P Grady
January 1983, The Journal of membrane biology,
L Reuss, and E Bello-Reuss, and T P Grady
June 1979, The Journal of membrane biology,
L Reuss, and E Bello-Reuss, and T P Grady
January 1982, The Journal of membrane biology,
L Reuss, and E Bello-Reuss, and T P Grady
September 1985, The American journal of physiology,
L Reuss, and E Bello-Reuss, and T P Grady
November 1984, The American journal of physiology,
L Reuss, and E Bello-Reuss, and T P Grady
December 1996, The American journal of physiology,
L Reuss, and E Bello-Reuss, and T P Grady
March 1979, The Journal of general physiology,
L Reuss, and E Bello-Reuss, and T P Grady
January 1982, The Journal of membrane biology,
L Reuss, and E Bello-Reuss, and T P Grady
January 1983, The Journal of membrane biology,
Copied contents to your clipboard!