Inactivation of the alamethicin-induced conductance caused by quaternary ammonium ions and local anesthetics. 1979

J J Donovan, and R Latorre

Long alkyl chain quaternary ammonium ions (QA), the local anesthetics (LA) tetracaine and lidocaine, imipramine, and pancuronium cause inactivation of the alamethicin-induced conductance in lipid bilayer membranes. The alamethicin-induced conductance undergoes inactivation only when these amphipathic compounds are added to the side containing alamethicin. The concentration of QA required to cause a given amount of inactivation depends on the length of the hydrocarbon chain and follows the sequence C9 greater than C10 greater than C12 greater than C16. LA and imipramine, in contrast to QA or pancuronium, are able to promote appreciable inactivation only if the pH of the alamethicin-free side is equal to or lower than the pK of these compounds. The membrane permeability to QA, LA, or imipramine is directly proportional to the alamethicin-induced conductance and is larger than the one for potassium. The observed steady state and time-course of the inactivation are well described by a model similar to that proposed by Heyer et al. (1976. J. Gen. Physiol. 67:703--729) and extended for any value of the diffuse double layer potential and for LA and imipramine. In this model QA, LA, or imipramine are able to permeate through the membrane only when the alamethicin-induced conductance is turned on. The amphipathic compounds then bind to the other membrane surface, changing the transmembrane potential and turning the conductance off. For a given concentration of QA, LA, or imipramine the extent of inactivation depends on two factors: first, the binding characteristics of these compounds to the membrane surface and second, their ability to permeate through the membrane when the alamethicin-induced conductance is turned on. The several possible mechanisms of permeation of the amphipathic molecules tested are discussed.

UI MeSH Term Description Entries
D007099 Imipramine The prototypical tricyclic antidepressant. It has been used in major depression, dysthymia, bipolar depression, attention-deficit disorders, agoraphobia, and panic disorders. It has less sedative effect than some other members of this therapeutic group. Imidobenzyle,Imizin,4,4'-Methylenebis(3-hydroxy-2-naphthoic acid)-3-(10,11-dihydro-5H-dibenzo(b,f)azepin-5-yl)-N,N-dimethyl-1-propanamine (1:2),Imipramine Hydrochloride,Imipramine Monohydrochloride,Imipramine Pamoate,Janimine,Melipramine,Norchlorimipramine,Pryleugan,Tofranil
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010197 Pancuronium A bis-quaternary steroid that is a competitive nicotinic antagonist. As a neuromuscular blocking agent it is more potent than CURARE but has less effect on the circulatory system and on histamine release. Pancuronium Bromide,Pancuronium Curamed,Pancuronium Organon,Pavulon,Bromide, Pancuronium
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D000408 Alamethicin A cyclic nonadecapeptide antibiotic that can act as an ionophore and is produced by strains of Trichoderma viride. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics

Related Publications

J J Donovan, and R Latorre
March 1981, The Journal of general physiology,
J J Donovan, and R Latorre
April 1962, Biochimica et biophysica acta,
J J Donovan, and R Latorre
January 1970, Bulletin de la Societe francaise de dermatologie et de syphiligraphie,
J J Donovan, and R Latorre
February 1954, Resenha clinico-cientifica,
J J Donovan, and R Latorre
July 1966, The Journal of general physiology,
J J Donovan, and R Latorre
December 1948, Bulletin of the Johns Hopkins Hospital,
J J Donovan, and R Latorre
October 1975, The Journal of membrane biology,
Copied contents to your clipboard!