The reverse turn as a polypeptide conformation in globular proteins. 1973

J L Crawford, and W N Lipscomb, and C G Schellman

The reverse turn, involving four consecutive amino acids, as a tertiary conformation in globular proteins is defined in terms of dihedral angles, the C(1) (alpha)...C(4) (alpha) distance and the O(1)...H-N(4) hydrogen bond distance. In seven proteins we find 125 examples of turns, comprising 33% of the amino acids in these proteins, as compared with 34% of the residues forming helices and only 17% forming beta-sheets. The amino-acid compositions of turns, helices, and beta-sheets are analyzed in some detail. We find Asn and Gly mainly in turns, Pro in turns (and at the beginning of helices), and Glu in helices. In these turns a statistical survey indicates that 19% of Asp residues are in the first position, 33% of Pro residues are in the second position, 24% of Asn residues are in the third position, and 26% of Trp residues are in the fourth position.

UI MeSH Term Description Entries
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D013381 Subtilisins A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.- Alcalase,AprA-Subtilisin,Bacillus amyloliquefaciens Serine Protease,Bacillus subtilis Alkaline Proteinase,Carlsberg Subtilisin,Maxatase,Nagarse,Novo Alcalase,Profezim,Protease VII,Subtilisin 72,Subtilisin A,Subtilisin BPN',Subtilisin Carlsberg,Subtilisin DY,Subtilisin E,Subtilisin GX,Subtilisin Novo,Subtilopeptidase A,Alcalase, Novo,AprA Subtilisin,Subtilisin, Carlsberg

Related Publications

J L Crawford, and W N Lipscomb, and C G Schellman
May 1987, International journal of peptide and protein research,
J L Crawford, and W N Lipscomb, and C G Schellman
July 1980, International journal of peptide and protein research,
J L Crawford, and W N Lipscomb, and C G Schellman
October 1978, FEBS letters,
J L Crawford, and W N Lipscomb, and C G Schellman
August 2007, Protein science : a publication of the Protein Society,
J L Crawford, and W N Lipscomb, and C G Schellman
January 1961, Biokhimiia (Moscow, Russia),
J L Crawford, and W N Lipscomb, and C G Schellman
May 1951, Proceedings of the National Academy of Sciences of the United States of America,
J L Crawford, and W N Lipscomb, and C G Schellman
January 1994, Journal of molecular biology,
J L Crawford, and W N Lipscomb, and C G Schellman
December 1991, Cell,
J L Crawford, and W N Lipscomb, and C G Schellman
August 1963, The Journal of biological chemistry,
J L Crawford, and W N Lipscomb, and C G Schellman
January 1983, Biopolymers,
Copied contents to your clipboard!