Induction of rat liver alkaline phosphatase by bile duct ligation. 1979

M M Kaplan

Bile duct ligation causes a five- to sevenfold increase in the activity of rat liver alkaline phosphatase within 12 hours after ligation and a similar rise in the activity of alkaline phosphatase in serum. The increased serum activity is due entirely to the appearance of a new isoenzyme that has the properties of rat liver alkaline phosphatase. The increase in both serum and liver alkaline phosphatase is prevented by the prior administration of cycloheximide in a dose that inhibits protein synthesis by 70%. Rat liver alkaline phosphatase was then purified to homogeneity. Antibody was raised to purified rat liver alkaline phosphatase in rabbits. The antibody was coupled to sepharose 4B and affinity columns made. (3)-H-leucine was then injected into the portal veins of sham operated rats and rats with bile duct ligation four hours after ligation. One hour after injection and five hours after ligation, animals were sacrificed. Liver alkaline phosphatase was purified by means of affinity chromatography and double immunoprecipitation with rabbit antibody to rat liver alkaline phosphatase and goat anti-rabbit gamma globulin. Bile duct ligation increased the incorporation of (3)-H-leucine into liver alkaline phosphatase more than threefold compared with sham operated rats, 164 CPM/mg protein vs. 49 CPM/mg protein (p < .001). The data indicate that the increased activity of rat liver alkaline phosphatase after bile duct ligation is due to enzyme induction rather than to activation of a pre-existing, relatively inactive enzyme.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008026 Ligation Application of a ligature to tie a vessel or strangulate a part. Ligature,Ligations,Ligatures
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002779 Cholestasis Impairment of bile flow due to obstruction in small bile ducts (INTRAHEPATIC CHOLESTASIS) or obstruction in large bile ducts (EXTRAHEPATIC CHOLESTASIS). Bile Duct Obstruction,Biliary Stasis,Bile Duct Obstructions,Biliary Stases,Cholestases,Duct Obstruction, Bile,Duct Obstructions, Bile,Obstruction, Bile Duct,Obstructions, Bile Duct,Stases, Biliary,Stasis, Biliary
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001652 Bile Ducts The channels that collect and transport the bile secretion from the BILE CANALICULI, the smallest branch of the BILIARY TRACT in the LIVER, through the bile ductules, the bile ducts out the liver, and to the GALLBLADDER for storage. Bile Duct,Duct, Bile,Ducts, Bile

Related Publications

M M Kaplan
August 1962, Biochimica et biophysica acta,
M M Kaplan
November 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M M Kaplan
April 1985, Cell biochemistry and function,
M M Kaplan
January 2001, In vivo (Athens, Greece),
Copied contents to your clipboard!