Cobalt induction of hepatic heme oxygenase; with evidence that cytochrome P-450 is not essential for this enzyme activity. 1974

M D Maines, and A Kappas

Treatment of rats in vivo with cobalt chloride stimulated heme oxidation by hepatic microsomes to levels up to 800% above controls. This treatment also caused increases in liver weight and in total microsomal protein; in contrast, marked decreases were produced in microsomal oxidation of ethylmorphine (80%), and in cytochrome P-450 (60-70%) and heme (30-50%) contents. Cobalt chloride treatment did not affect heme oxidation by the spleen heme oxygenase system. The rate of heme oxidation by hepatic microsomal enzymes and the microsomal content of cytochrome P-450 were found to be unrelated. This conclusion was reached from studies in which microsomal heme oxygenase activity from cobalt-treated animals could be increased by 900% above control levels in the same microsomal preparation in which cytochrome P-450 content was decreased to spectrally unmeasurable amounts after incubation with 4 M urea. The same treatment eliminated ehtylmorphine demethylation and decreased microsomal NADPH-cytochrome c reductase (EC 1.6.2.4) activity by 75%. It is concluded that (i) the hepatic microsomal enzyme system that oxidizes heme compounds is not the same as that which metabolizes drugs, (ii) cytochrome P-450 is not essential for the oxidation of heme by liver cells, (iii) there is no direct relationship between the rate of heme oxidation and the level of NADPH-cytochrome c reductase activity, and (iv) the oxidation of heme is protein-dependent and the active proteins are inducible, but are different from those involved in drug metabolism.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009022 Morphine Derivatives Analogs or derivatives of morphine. Morphines
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001663 Bilirubin A bile pigment that is a degradation product of HEME. Bilirubin IX alpha,Bilirubin, (15E)-Isomer,Bilirubin, (4E)-Isomer,Bilirubin, (4E,15E)-Isomer,Bilirubin, Calcium Salt,Bilirubin, Disodium Salt,Bilirubin, Monosodium Salt,Calcium Bilirubinate,Hematoidin,delta-Bilirubin,Bilirubinate, Calcium,Calcium Salt Bilirubin,Disodium Salt Bilirubin,Monosodium Salt Bilirubin,Salt Bilirubin, Calcium,delta Bilirubin

Related Publications

M D Maines, and A Kappas
September 1976, Archives of biochemistry and biophysics,
M D Maines, and A Kappas
June 1981, The Journal of nutrition,
M D Maines, and A Kappas
December 1980, The Journal of biological chemistry,
M D Maines, and A Kappas
January 1990, Methods in enzymology,
M D Maines, and A Kappas
January 1980, Pharmacology & therapeutics,
M D Maines, and A Kappas
January 1987, Journal of molecular and cellular cardiology,
M D Maines, and A Kappas
January 1990, Pharmacology & therapeutics,
M D Maines, and A Kappas
June 1993, Casopis lekaru ceskych,
Copied contents to your clipboard!