Spontaneous current pulses through developing fucoid eggs. 1974

R Nuccitelli, and L F Jaffe

Using a newly developed, extracellular vibrating electrode, we can now measure the electrical currents that traverse a single developing cell. We have studied the eggs of the common seaweed, Pelvetia, during their first 2 days of development and find that the endogenous electrical current through them includes a pulse component as well as a relatively steady component. Both of these enter the egg's growing tip and leave the rest of the embryo. The current pulses first appear a few hours after growth begins and have a characteristic shape that is independent of amplitude. They have a duration of about 100 sec, an average frequency of 1-5 per hr, and enter with peak surface intensities of 3-10 (and rarely up to 30) muA/cm(2). By the two-cell stage they account for about a fourth of the total transembryonic current. Since they may overlap to any degree and (as is documented elsewhere) are generally accompanied by peak membrane depolarizations of only 2-6 mV, their course does not seem to be voltage-controlled. Thus, they seem essentially different from action potentials. We also find that the rate at which the egg grows in length is roughly proportional to the size of the steady current traversing it.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D056890 Eukaryota One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista. Eukaryotes,Eucarya,Eukarya,Eukaryotas,Eukaryote

Related Publications

R Nuccitelli, and L F Jaffe
January 1975, Science (New York, N.Y.),
R Nuccitelli, and L F Jaffe
April 1972, Developmental biology,
R Nuccitelli, and L F Jaffe
October 1976, Developmental biology,
R Nuccitelli, and L F Jaffe
January 1980, Science (New York, N.Y.),
R Nuccitelli, and L F Jaffe
December 1973, Developmental biology,
R Nuccitelli, and L F Jaffe
December 1987, Developmental biology,
R Nuccitelli, and L F Jaffe
March 1985, Developmental biology,
R Nuccitelli, and L F Jaffe
December 2023, The journal of physical chemistry letters,
R Nuccitelli, and L F Jaffe
May 1966, Journal of biochemistry,
R Nuccitelli, and L F Jaffe
August 1964, Nature,
Copied contents to your clipboard!