The effect of cell excision and microelectrode perforation on membrane resistance measurements of Nitella translucens. 1979

I O Blake

The effect of cell excision and microelectrode perforation on the membrane resistance measurements of Nitella translucens was determined by direct experiment. From the results it is concluded that perforation has no effect on cells as short as 1 cm. Current leakage though the node of an excised cell has however to be given some consideration. The method used for determining the resistance recovery to insertion has a wide application and its simplicity will encourage its use in other biological systems.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D018521 Plant Physiological Phenomena The physiological processes, properties, and states characteristic of plants. Plant Physiological Processes,Plant Physiology,Physiology, Plant,Plant Physiologic Phenomena,Plant Physiologic Phenomenon,Plant Physiological Phenomenon,Plant Physiological Process,Phenomena, Plant Physiologic,Phenomena, Plant Physiological,Phenomenon, Plant Physiologic,Phenomenon, Plant Physiological,Phenomenons, Plant Physiological,Physiologic Phenomena, Plant,Physiologic Phenomenon, Plant,Physiological Phenomena, Plant,Physiological Phenomenon, Plant,Physiological Phenomenons, Plant,Physiological Process, Plant,Physiological Processes, Plant,Plant Physiological Phenomenons,Process, Plant Physiological,Processes, Plant Physiological
Copied contents to your clipboard!