Characterisation of ribosomal satellite in total nuclear DNA from Physarum polycephalum. 1979

N Hardman, and P L Jack, and A J Brown, and A McLachlan

The distinctive properties of satellite DNA molecules containing the genes for ribosomal RNA in Physarum polycephalum permits their identification in total, unfractionated nuclear DNA in the foldback form, after denaturation and fast annealing. Using the electron microscope the location and properties of three characteristic regions containing tandemly-repeated, inverted sequences have been investigated. At least two additional regions, also containing tandem repeats, are shown to be present and located towards each end of the rDNA molecule, at a site adjacent to the segment coding for the 26 S rRNA. All the regions which contain tandem repeats are composed of sequences which, within experimental error, appear to share a common unit repeat length of about 90 nucleotides.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010804 Physarum A genus of protozoa, formerly also considered a fungus. Characteristics include the presence of violet to brown spores. Physarums
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

N Hardman, and P L Jack, and A J Brown, and A McLachlan
September 1976, Journal of molecular biology,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
June 1978, Biochimica et biophysica acta,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
May 1974, European journal of biochemistry,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
November 1977, European journal of biochemistry,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
December 1980, The Biochemical journal,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
February 1979, Biochemical and biophysical research communications,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
October 1973, Nature: New biology,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
January 1970, Biochimica et biophysica acta,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
November 1973, Archives of biochemistry and biophysics,
N Hardman, and P L Jack, and A J Brown, and A McLachlan
December 1979, Biochemical and biophysical research communications,
Copied contents to your clipboard!