Antennular sensilla of the brine shrimp, Artemia salina. 1979

G E Tyson, and M L Sullivan

1. Scanning electron microscopy was used to characterize the external morphology of setae found on the antennules of adults and nauplii of the brine shrimp, Artemia salina (L.). The permeability of the antennular setae was studied by means of Slifer's crystal violet method. 2. Each antennule of an adult brine shrimp possessed a terminal cluster of sensory setae. Within a cluster there were two morphologically distinct kinds of sensilla, here designated type 1 and type 2. Three type 1 sensilla were observed on every antennule examined. The number of type 2 sensilla per antennule was usually four or five. 3. Type 1 sensilla of adults were 43 to 80 micrometer long and simple in external morphology. They were widest at the base, decreased in diameter gradually, and terminated as a finely tapered tip. No pores were resolved by scanning electron microscopy. 4. Type 2 sensilla of adults were shorter (shaft length, 12 to 23 micrometer) and displayed a single pore at the tip (average pore diameter, 0.4 micrometer). In thin section they were seen to possess a distinctive articular specialization of the cuticle at the base of the seta. 5. Dye penetration experiments indicated that type 2 sensilla were permeable to aqueous crystal violet, whereas type 1 sensilla were not. 6. The antennular setae of nauplii resembled type 1 sensilla in general shape, in being impermeable to crystal violet, and in lacking a terminal pore and basal articular specialization. Moreover, a total of three setae was normally present on each naupliar antennule, and the same number of type 1 sensilla was found on each adult antennule examined. If the three naupliar setae represent a developmental stage in the formation of three adult sensilla, available observations suggest that the larval setae are developmentally related to type 1, rather than to type 2 adult sensilla.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001156 Artemia A genus of CRUSTACEA of the order ANOSTRACA, found in briny pools and lakes and often cultured for fish food. It has 168 chromosomes and differs from most crustaceans in that its blood contains hemoglobin. Brine Shrimp,Shrimp, Brine,Artemias,Brine Shrimps,Shrimps, Brine
D012679 Sense Organs Specialized organs adapted for the reception of stimuli by the NERVOUS SYSTEM. Sensory System,Organ, Sense,Sense Organ,Sensory Systems,System, Sensory

Related Publications

G E Tyson, and M L Sullivan
October 1965, Comparative biochemistry and physiology,
G E Tyson, and M L Sullivan
March 1962, Genetics,
G E Tyson, and M L Sullivan
May 1974, Journal - Association of Official Analytical Chemists,
G E Tyson, and M L Sullivan
January 1975, Journal of agricultural and food chemistry,
G E Tyson, and M L Sullivan
January 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
G E Tyson, and M L Sullivan
January 1974, Journal of agricultural and food chemistry,
G E Tyson, and M L Sullivan
November 1977, Biochemical and biophysical research communications,
G E Tyson, and M L Sullivan
November 1972, Archives of biochemistry and biophysics,
G E Tyson, and M L Sullivan
June 1993, Planta medica,
G E Tyson, and M L Sullivan
January 2011, Toxicon : official journal of the International Society on Toxinology,
Copied contents to your clipboard!