Purification and some properties of five endo-1,4-beta-D-xylanases and a beta-D-xylosidase produced by a strain of Aspergillus niger. 1979

M John, and B Schmidt, and J Schmidt

Five different xylanases and a beta-D-xylosidase in the culture medium of Aspergillus niger have been purified to homogeneity from 13- to 52-fold by a procedure of gel and hydroxylapatite chromatography. The strain was isolated from soil of the African equatorial forest. Gel chromatography of the purified enzymes indicated that three of the xylanases have molecular weights of 31,000 and the other two xylanases have molecular weights of 50,000. beta-D-Xylosidase has a molecular weight of 78,000. The pH curves of the xylanases were quite diverse and showed pH optima ranging from 4.0 to 6.5. Characteristic action patterns were obtained for each of the purified xylanases by gel chromatography of the xylan digests on Bio-Gel P-2. The enzymes degraded arabinoxylan by an endomechanism, producing L-arabinose, D-xylose, xylobiose, and a mixture of branched arabinose-xylose and D-xylose oligosaccharides. All xylanases seemed to be capable of liberating L-arabinose from either arabinoxylan or the arabinose-xylose oligosaccharides. Branched arabinose-containing D-xylose oligosaccharides were slowly hydrolyzed, so that these sugars accumulate in the digest. Two xylanases showed relatively broad substrate specificity and were able to degrade also crystalline cellulose. beta-D-Xylosidase showed optimal activity at pH 6.7 to 7.0 and at 42 degrees C. The Km for o-nitrophenyl-beta-D-xylopyranoside was 0.22 mM and xylotriose was hydrolyzed more rapidly than xylobiose.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D001234 Aspergillus niger An imperfect fungus causing smut or black mold of several fruits and vegetables such as grapes, apricots, onions, and peanuts, and is a common contaminant of food. Aspergillus lacticoffeatus
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014990 Xylans Polysaccharides consisting of xylose units. Xylan
D014995 Xylosidases A group of enzymes that catalyze the hydrolysis of alpha- or beta-xylosidic linkages. EC 3.2.1.8 catalyzes the endo-hydrolysis of 1,4-beta-D-xylosidic linkages; EC 3.2.1.32 catalyzes the endo-hydrolysis of 1,3-beta-D-xylosidic linkages; EC 3.2.1.37 catalyzes the exo-hydrolysis of 1,4-beta-D-linkages from the non-reducing termini of xylans; and EC 3.2.1.72 catalyzes the exo-hydrolysis of 1,3-beta-D-linkages from the non-reducing termini of xylans. Other xylosidases have been identified that catalyze the hydrolysis of alpha-xylosidic bonds. Xylobiases,Xylan Hydrolases,Hydrolases, Xylan

Related Publications

M John, and B Schmidt, and J Schmidt
September 1995, Bioscience, biotechnology, and biochemistry,
M John, and B Schmidt, and J Schmidt
April 1977, Biokhimiia (Moscow, Russia),
M John, and B Schmidt, and J Schmidt
March 1971, Enzymologia,
M John, and B Schmidt, and J Schmidt
January 1982, Prikladnaia biokhimiia i mikrobiologiia,
M John, and B Schmidt, and J Schmidt
January 1983, Journal of applied biochemistry,
M John, and B Schmidt, and J Schmidt
January 2001, Acta microbiologica Polonica,
M John, and B Schmidt, and J Schmidt
January 1983, Prikladnaia biokhimiia i mikrobiologiia,
M John, and B Schmidt, and J Schmidt
March 2001, Journal of industrial microbiology & biotechnology,
M John, and B Schmidt, and J Schmidt
September 1985, Journal of biochemistry,
Copied contents to your clipboard!