The synthesis of chloroplast high-molecular-weight ribosomal ribonucleic acid in spinach. 1979

M R Hartley, and C Head

Illuminated suspensions of chloroplasts isolated from young spinach leaves show incorporation of [3H]uridine into several species of RNA. One such RNA species of Mr 2.7 x 10(6) shows sequence homology with both the chloroplast 23-S rRNA (Mr = 1.05 x 10(6)) and 16-S rRNA (Mr = 0.56 x 10(6)), as judged by DNA/RNA competition hybridization. Leaves labelled in vivo with [32P]orthophosphate in the presence of chloramphenicol accumulate labelled RNAs of Mr 1.28 x 10(6), 0.71/0.75 x 10(6) and 0.47 x 10(6). The 1.28 x 10(6)-Mr RNA shows 80.5% sequence homology with the 1.05 x 10(6)-Mr rRNA and the 0.71/0.75 x 10(6)-Mr RNA mixture shows 76% sequence homology with the 0.56 x 10(6)-Mr rRNA. We conclude that the pathway of rRNA maturation in spinach chloroplasts is similar to that of Escherichia coli.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

M R Hartley, and C Head
May 1979, European journal of biochemistry,
M R Hartley, and C Head
December 1973, The Biochemical journal,
M R Hartley, and C Head
September 1973, The Biochemical journal,
M R Hartley, and C Head
June 1971, The Biochemical journal,
M R Hartley, and C Head
June 1963, Biochimica et biophysica acta,
M R Hartley, and C Head
January 1978, Acta microbiologica Academiae Scientiarum Hungaricae,
M R Hartley, and C Head
December 1978, The Biochemical journal,
Copied contents to your clipboard!