Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. 1973

R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg

Measurements of oxidation rates, respiratory quotients (RQ), and release of (14)CO(2) from uniformly labeled substrates showed that glutamate, alpha-ketoglutarate, and synthetic and natural amino acid mixtures are oxidized by suspensions of Bdellovibrio bacteriovorus strain 109J. The oxidation of these substrates largely suppress the endogenous respiration of the Bdellovibrio cells and may or may not cause a small increase, 20 to 50%, in their rate of oxygen consumption. The failure of respired substrates to increase markedly the respiration rate of the Bdellovibrio cells over the endogenous value is discussed. Carbon from these substrates is incorporated into the Bdellovibrio cells during oxidation. Acetate is also oxidized, but its oxidation inhibits endogenous respiration by only about 40% and no acetate is assimilated. The RQ of the Bdellovibrio cells changes from a value characteristic of endogenous respiration to that characteristic of the oxidation of glutamate or of a balanced amino mixture very shortly after the attack of the Bdellovibrio cells on their prey, and the latter RQ is maintained during intraperiplasmic growth. Glutamate, or a mixture of amino acids in the external environment, contributes to the carbon dioxide produced by the Bdellovibrio cells growing intraperiplasmically. It is concluded from these data that amino acids, derived from the breakdown of the protein of the prey, serve as a major energy source during intraperiplasmic growth of B. bacteriovorus 108J. Insofar as they were tested, B. bacteriovorus strains 109D and A. 3. 12 were similar in respiration to strain 109J.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
September 1978, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
January 1998, Canadian journal of microbiology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
March 1975, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
May 1984, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
September 1978, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
November 1979, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
September 1978, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
February 2006, Current microbiology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
March 1978, Journal of bacteriology,
R B Hespell, and R A Rosson, and M F Thomashow, and S C Rittenberg
March 1975, Journal of bacteriology,
Copied contents to your clipboard!