A DNA-binding protein induced by bacteriophage T7. 1973

R C Reuben, and M L Gefter

A DNA-binding protein has been purified from Escherichia coli infected with bacteriophage T7 by DNA-cellulose chromatography. The protein is absent in uninfected cells. The purified protein has a molecular weight of 31,000 and binds strongly and preferentially to single-stranded DNA. In vitro studies show that this protein can stimulate the rate of polymerization catalyzed by the T7-induced DNA polymerase 10-15 times under conditions where the polymerase is unable to effectively use a single-stranded template. The degree of stimulation is dependent upon the ratio of binding protein to DNA template and is independent of polymerase concentration. The observed stimulation is specific for the T7 DNA polymerase in that addition of the protein to reactions catalyzed by E. coli DNA polymerases I, II, or III or T4 DNA polymerase is without effect.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

R C Reuben, and M L Gefter
December 1971, European journal of biochemistry,
R C Reuben, and M L Gefter
August 2003, The Journal of biological chemistry,
R C Reuben, and M L Gefter
April 1995, Biophysical journal,
R C Reuben, and M L Gefter
February 2019, Seminars in cell & developmental biology,
R C Reuben, and M L Gefter
August 2001, Proceedings of the National Academy of Sciences of the United States of America,
R C Reuben, and M L Gefter
February 1977, European journal of biochemistry,
R C Reuben, and M L Gefter
February 2003, The Journal of biological chemistry,
Copied contents to your clipboard!