| D008861 |
Microsomes |
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) |
Microsome |
|
| D008928 |
Mitochondria |
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) |
Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions |
|
| D009829 |
Oleic Acids |
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. |
Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic |
|
| D010169 |
Palmitic Acids |
A group of 16-carbon fatty acids that contain no double bonds. |
Acids, Palmitic |
|
| D002458 |
Cell Fractionation |
Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. |
Cell Fractionations,Fractionation, Cell,Fractionations, Cell |
|
| D003065 |
Coenzyme A |
|
CoA,CoASH |
|
| D003066 |
Coenzyme A Ligases |
Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. |
Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A |
|
| D004952 |
Esters |
Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. |
Ester |
|
| D005230 |
Fatty Acids, Nonesterified |
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. |
Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids |
|
| D006898 |
Hydroxylamines |
Organic compounds that contain the (-NH2OH) radical. |
|
|