Lipid composition of human neural tumors. 1979

A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart

Gangliosides, cholesterol, and phospholipids were quantitated in the tissues of 11 human neural tumors and the cells of two gliomas cultured in vitro. All tumor tissues contained higher water concentrations but lower total lipid concentrations than either human grey or white matter. In general they contained less cholesterol, sphingomyelin, and serine glycerophospholipid but more choline glycerophospholipid than white matter. Concentrations of total ganglioside sialic acid were intermediate between grey and white matter. Compared with normal brain, all tumors had greater proportions of the structurally less complex gangliosides and smaller proportions of the more complex gangliosides. This was most marked in the rapidly growing tumors while the better differentiated astrocytomas contained the greatest proportions of complex gangliosides. The cells of the cultured tumors contained amounts of total lipid and total phospholipid similar to their parent tissues. However, the cultures had less cholesterol, sphingomyelin, and total ganglioside than their parent tissues. There were significant amounts of choline and ethanolamine plasmalogens in both cultures and parent tissues. The ganglioside patterns of both cultures were complex but they contained a greater proportion of structurally simpler gangliosides than their parent tissues.-Yates, A. J., D. K. Thompson, C. P. Boesel, C. Albrightson, and R. W. Hart. Lipid composition of human neural tumors.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids

Related Publications

A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
March 1987, No to shinkei = Brain and nerve,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
August 1963, Acta neurochirurgica,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
February 1979, European journal of biochemistry,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
September 1979, Indian journal of experimental biology,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
July 1961, The American review of respiratory disease,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
July 1971, No to shinkei = Brain and nerve,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
November 1971, Lipids,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
June 1977, Inflammation,
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
November 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A J Yates, and D K Thompson, and C P Boesel, and C Albrightson, and R W Hart
April 1965, The Biochemical journal,
Copied contents to your clipboard!