The production of migration inhibition factor by B and T cells of the guinea pig. 1973

T Yoshida, and H Sonozaki, and S Cohen

Stimulation of sensitized lymphocytes by specific antigen in vitro leads to the production of migration inhibition factor (MIF). In the case of the pure soluble protein, or hapten-protein antigens used in the present studies, this MIF production was a property of the T lymphocytes in the cell suspensions. When PPD was used, B cells, as well as T cells, produced MIF. Similarly, PPD could stimulate B cells to mediate the macrophage disappearance reaction, a reaction which is known to be a T cell-dependent in vivo manifestation of cell-mediated immunity. Suspensions of lymphocytes from nonimmune donors could also be stimulated by PPD; in this case, B cells, but not T cells, produced MIF. The factors produced by the two lymphocyte subpopulations appeared to be similar, if not identical, on the basis of physico-chemical criteria. It is suggested that PPD stimulates B cells for MIF production because of its role as a B cell mitogen. The ability of endotoxin lipopolysaccharide, another B cell mitogen, to also induce MIF production by B cells supports this contention. Thus, although activation of lymphocytes for MIF production by specific antigen is a property of T cells, B cells as well as T cells may be so activated by agents which act nonspecifically. This may prove to have implications for in vivo events involved in immunization. In addition, these observations lend further support to the concept that lymphokine production represents a general biologic phenomenon in addition to playing a role in the effector mechanisms for reactions of cell-mediated immunity.

UI MeSH Term Description Entries
D008263 Macrophage Migration-Inhibitory Factors Proteins released by sensitized LYMPHOCYTES and possibly other cells that inhibit the migration of MACROPHAGES away from the release site. The structure and chemical properties may vary with the species and type of releasing cell. Macrophage Migration Inhibitory Factor,Migration Inhibition Factors, Macrophage,Macrophage Migration Inhibition Factors,Migration Inhibition Factor, Macrophage,Macrophage Migration Inhibitory Factors,Migration-Inhibitory Factors, Macrophage
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D002464 Cell Migration Inhibition Phenomenon of cell-mediated immunity measured by in vitro inhibition of the migration or phagocytosis of antigen-stimulated LEUKOCYTES or MACROPHAGES. Specific CELL MIGRATION ASSAYS have been developed to estimate levels of migration inhibitory factors, immune reactivity against tumor-associated antigens, and immunosuppressive effects of infectious microorganisms. Chemotaxis Inhibition,Chemotaxis Inhibitions,Inhibition, Chemotaxis,Inhibitions, Chemotaxis
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

T Yoshida, and H Sonozaki, and S Cohen
October 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Yoshida, and H Sonozaki, and S Cohen
January 1979, Scandinavian journal of immunology,
T Yoshida, and H Sonozaki, and S Cohen
November 1990, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
T Yoshida, and H Sonozaki, and S Cohen
July 1980, Cellular immunology,
T Yoshida, and H Sonozaki, and S Cohen
October 1978, Journal of immunology (Baltimore, Md. : 1950),
T Yoshida, and H Sonozaki, and S Cohen
October 1975, Journal of immunology (Baltimore, Md. : 1950),
T Yoshida, and H Sonozaki, and S Cohen
March 1975, European journal of immunology,
T Yoshida, and H Sonozaki, and S Cohen
January 1972, International archives of allergy and applied immunology,
T Yoshida, and H Sonozaki, and S Cohen
April 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!