Molecular and genetic studies of an R factor system consisting of independent transfer and drug resistance plasmids. 1973

J van Embden, and S N Cohen

Certain genetic, structural, and biochemical properties of a class 2 R-factor system consisting of the conjugally proficient transfer plasmid I and the naturally occurring non-conjugative tetracycline (Tc) resistance plasmid 219 are reported. I and 219 exist as separate plasmid deoxyribonucleic acid (DNA) species in both Escherichia coli and Salmonella panama, having molecular weights of 42 x 10(6) and 5.8 x 10(6), respectively. The buoyant densities of I and 219 are 1.702 and 1.710 g/cm(3), respectively, in neutral cesium chloride. Although the Tc resistance plasmid is not transmissible in a normal conjugal mating, it is mobilized in a three-component mating by plasmid I and by certain other conjugative plasmids of the fi(+) or fi(-) phenotype. Mobilization does not appear to involve intermolecular recombination between plasmids, and no covalent linkage of resistance markers and fertility functions is observed. Transformation of CaCl(2)-treated E. coli by plasmid DNA is shown to be a useful procedure for studying the biological properties of different plasmid molecular species that have been fractionated in vitro, and for selectively inserting non-self-transmissible plasmids into specific bacterial strains. The effects of tetracycline on the rate of protein synthesis carried out by plasmid 219 were studied by using isolated E. coli minicells into which this plasmid had segregated. Consistent with the results of earlier investigations showing the inducibility of plasmid-mediated Tc resistance in E. coli, the antibiotic was observed to stimulate protein synthesis in minicells carrying the plasmid 219 and totally inhibit (3)H-leucine incorporation by minicells lacking the Tc resistance marker. Five discrete polypeptide species were synthesized by minicells carrying plasmid 219; exposure of minicells or parent bacteria to Tc resulted in specific and reproducible changes in polypeptide synthesis patterns.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J van Embden, and S N Cohen
February 1973, Journal of bacteriology,
J van Embden, and S N Cohen
January 1971, Nihon Ishikai zasshi. Journal of the Japan Medical Association,
J van Embden, and S N Cohen
November 1966, Igaku to seibutsugaku. Medicine and biology,
J van Embden, and S N Cohen
June 1964, The Journal of antibiotics. Ser. B,
J van Embden, and S N Cohen
June 1968, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J van Embden, and S N Cohen
May 1968, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J van Embden, and S N Cohen
July 1978, The New Zealand medical journal,
J van Embden, and S N Cohen
January 1973, Zeitschrift fur allgemeine Mikrobiologie,
Copied contents to your clipboard!