Complement-dependent B-cell activation by cobra venom factor and other mitogens? 1974

P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann

It has been proposed that two distinct signals are required for the triggering of the precursors of antibody-forming bone marrow-derived cells (B cells): (a) the binding of antigen or of a mitogen to the corresponding receptor sites on B-cell membranes and (b) the interaction of activated C3 with the C3 receptor of B lymphocytes. There is growing evidence that B-cell mitogens and T (thymus-derived cell)-independent antigens are capable of activating the alternate pathway of the complement system (bypass). Therefore, the effect of another potent bypass inducer was investigated with regard to B-cell activation and the role of C3. Purified, pyrogen-free cobra venom factor was mitogenic for both T and B lymphocytes (cortisone-resistant mouse thymus cells and lymph node lymphocytes from congenitally athymic mice). Venom factor could substitute for T cells by restoring the potential of antibody formation to sheep red blood cells in mouse B-cell cultures supplemented with macrophages or 2-mercaptoethanol. Venom factor may be capable of conferring activated C3 to the C3 receptor of B lymphocytes: preincubation of lymphoid cells with homologous serum or plasma, 10 mM EDTA, and sepharose-coupled venom factor converted with serum to an enzyme active against C3, inhibited their capacity to subsequently form rosettes with sheep erythrocytes sensitized with amboceptor and C5-deficient mouse complement. In the absence of EDTA, preincubation of freshly prepared B-cell suspensions with C3-sufficient homologous serum also blocked their subsequent interaction with complement-sensitized erythrocytes and at the same time rendered them reactive to an otherwise T-cell-specific mitogen. Moreover, mitogen induced B-cell proliferation in lymph node (but not in spleen) cell cultures, appeared to depend on the availability of exogenous C3: zymosan-absorbed fetal bovine serum (only 8.3% site-forming units remaining) supported T-cell activation by phytohemagglutinin, concanavalin A, and venom factor, but failed to sustain B-cell stimulation by pokeweed mitogen, lipopolysaccharide, and venom factor. T-cell-dependent antibody formation in composite cultures containing T cells or T-cell-substituting B-cell mitogens, B cells, and macrophages, always required the presence of C3-sufficient serum.

UI MeSH Term Description Entries
D007104 Immune Adherence Reaction A method for the detection of very small quantities of antibody in which the antigen-antibody-complement complex adheres to indicator cells, usually primate erythrocytes or nonprimate blood platelets. The reaction is dependent on the number of bound C3 molecules on the C3b receptor sites of the indicator cell. Adherence Reaction, Immune,Adherence Reactions, Immune,Immune Adherence Reactions,Reaction, Immune Adherence,Reactions, Immune Adherence
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.

Related Publications

P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
December 1973, Journal of immunology (Baltimore, Md. : 1950),
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
January 2007, Current pharmaceutical design,
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
September 1982, The Journal of biological chemistry,
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
November 1979, Journal of immunology (Baltimore, Md. : 1950),
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
December 1976, Japanese journal of microbiology,
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
January 1996, Advances in experimental medicine and biology,
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
December 1986, Journal of applied physiology (Bethesda, Md. : 1985),
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
June 1989, Molecular immunology,
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
January 1971, International archives of allergy and applied immunology,
P Dukor, and G Schumann, and R H Gisler, and M Dierich, and W König, and U Hadding, and D Bitter-Suermann
March 1984, The American journal of pathology,
Copied contents to your clipboard!