Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coli K-12. 1974

J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino

The kinetics of isoleucine, leucine, and valine transport in Escherichia coli K-12 has been analyzed as a function of substrate concentration. Such analysis permits an operational definition of several transport systems having different affinities for their substrates. The identification of these transport systems was made possible by experiments on specific mutants whose isolation and characterization is described elsewhere. The transport process with highest affinity was called the "very-high-affinity"process. Isoleucine, leucine, and valine are substrates of this transport process and their apparent K(m) values are either 10(-8), 2 x 10(-8), or 10(-7) M, respectively. Methionine, threonine, and alanine inhibit this transport process, probably because they are also substrates. The very-high-affinity transport process is absent when bacteria are grown in the presence of methionine, and this is due to a specific repression. Methionine and alanine were also found to affect the pool size of isoleucine and valine. Another transport process is the "high-affinity" process. Isoleucine, leucine, and valine are substrates of this transport process, and their apparent K(m) value is 2 x 10(-6) M for all three. Methionine and alanine cause very little or no inhibition, whereas threonine appears to be a weak inhibitor. Several structural analogues of the branched-chain amino acids inhibit the very-high-affinity or the high-affinity transport process in a specific way, and this confirms their existence as two separate entities. Three different "low-affinity" transport processes, each specific for either isoleucine or leucine or valine, show apparent K(m) values of 0.5 x 10(-4) M. These transport processes show a very high substrate specificity since no inhibitor was found among other amino acids or among many branched-chain amino acid precursors or analogues tried. The evolutionary significance of the observed redundancy of transport systems is discussed.

UI MeSH Term Description Entries
D007532 Isoleucine An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. Alloisoleucine,Isoleucine, L-Isomer,L-Isoleucine,Isoleucine, L Isomer,L-Isomer Isoleucine
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine

Related Publications

J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
December 1973, Journal of bacteriology,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
March 1962, Journal of bacteriology,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
April 1970, Biochimica et biophysica acta,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
October 1972, Journal of bacteriology,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
April 1974, Biochemical and biophysical research communications,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
October 1978, Journal of bacteriology,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
May 1977, Journal of bacteriology,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
October 1966, Canadian journal of biochemistry,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
May 1968, Journal of bacteriology,
J Guardiola, and M De Felice, and T Klopotowski, and M Iaccarino
October 1972, Journal of bacteriology,
Copied contents to your clipboard!