Negative chemotaxis in Escherichia coli. 1974

W W Tso, and J Adler

Several methods for detecting or measuring negative chemotaxis are described. Using these, we have surveyed a number of chemicals for their ability to repel Escherichia coli. Although most of the repellents are harmful compounds, harmfulness is neither necessary nor sufficient to make a compound a repellent. The repellents can be grouped into at least nine classes according to (i) competition experiments, (ii) mutants lacking certain of the negative taxes, and (iii) their chemical structure. The specificity of each class was studied. It is suggested that each class corresponds to a distinct chemoreceptor. Generally, non-chemotactic mutants lack both positive and negative chemotaxis, and l-methionine is required for both kinds of taxis. Repellents at very low concentrations are not attractants, and attractants at very high concentrations are not repellents.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid

Related Publications

W W Tso, and J Adler
January 1965, Cold Spring Harbor symposia on quantitative biology,
W W Tso, and J Adler
June 2008, Physical review letters,
W W Tso, and J Adler
September 1973, Journal of bacteriology,
W W Tso, and J Adler
March 2017, Physical review letters,
W W Tso, and J Adler
January 1988, Microbiology and immunology,
W W Tso, and J Adler
March 2012, Physical review letters,
W W Tso, and J Adler
December 2021, Nature physics,
W W Tso, and J Adler
October 1972, Journal of bacteriology,
W W Tso, and J Adler
January 2014, PloS one,
W W Tso, and J Adler
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!