Polypeptide formation and polyribosomes in Escherichia coli treated with chloramphenicol. 1974

K Cremer, and L Silengo, and D Schlessinger

In Escherichia coli cultures maximally inhibited with chloramphenicol, formation of polypeptides still continued at a slow, constant rate for at least 90 min. The rate of leucine incorporation was reduced to 0.5%, but methionine was only reduced to 2%, suggesting that chains are normally initiated with methionine but are prematurely released at a short chain length. Consistent with this possibility was the distribution of the products on Sephadex columns: a range of peptides longer than 4 and shorter than 60 to 70 residues was seen. Less than 10% of the peptides broke down during a chase with cold amino acids, and during continuous labeling they accumulated progressively. On the average, one peptide was formed per ribosome every 5 min. Peptide synthesis in the presence of chloramphenicol was still dependent on ribosome translocation; it stopped in a mutant with an inactivated temperature-sensitive elongation factor G. But even in the absence of translocation, new messenger ribonucleic acid (mRNA) chains were found joined to one or a few ribosomes. The chains had a size distribution comparable to that of mRNA from polyribosomes of growing cells. They were stabilized for an average time of about 5 min, but were more rapidly degraded after puromycin was added to the cells. This suggests that stabilization may be related to the average time spent by a ribosome on an mRNA chain, with or without polypeptide formation.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

K Cremer, and L Silengo, and D Schlessinger
May 1971, Journal of molecular biology,
K Cremer, and L Silengo, and D Schlessinger
July 1982, Journal of bacteriology,
K Cremer, and L Silengo, and D Schlessinger
June 1967, Journal of bacteriology,
K Cremer, and L Silengo, and D Schlessinger
August 1970, Nature,
K Cremer, and L Silengo, and D Schlessinger
October 1973, European journal of biochemistry,
K Cremer, and L Silengo, and D Schlessinger
March 1967, The Journal of biological chemistry,
K Cremer, and L Silengo, and D Schlessinger
October 1971, The Journal of biological chemistry,
K Cremer, and L Silengo, and D Schlessinger
October 1969, Journal of molecular biology,
K Cremer, and L Silengo, and D Schlessinger
December 1963, Biochimica et biophysica acta,
K Cremer, and L Silengo, and D Schlessinger
January 1971, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Copied contents to your clipboard!