Curing of an R factor Escherichia coli by trimethoprim. 1973

R J Pinney, and J T Smith

R factor 1818, which we have shown previously to be eliminated by thymine starvation, was cured from three strains of Escherichia coli K-12 by overnight exposure to trimethoprim. Elimination was abolished in the presence of added thymine or thymidine, which suggests that curing is the result of the induction of thymineless conditions by trimethoprim. Starvation of the required amino acids proline and histidine had little effect on elimination, whereas methionine deprivation enhanced it. R factor curing was abolished by the presence of chloramphenicol, and it is concluded that protein synthesis is required for elimination to occur. It is suggested that elimination may result from the activity of a nuclease which is synthesized or induced during both direct thymine starvation and by trimethoprim treatment.

UI MeSH Term Description Entries
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005111 Extrachromosomal Inheritance Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA. Cytoplasmic Inheritance,Extranuclear Inheritance,Inheritance, Cytoplasmic,Inheritance, Extrachromosomal,Inheritance, Extranuclear
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013941 Thymine One of four constituent bases of DNA. 5-Methyluracil,5 Methyluracil
D014295 Trimethoprim A pyrimidine inhibitor of dihydrofolate reductase, it is an antibacterial related to PYRIMETHAMINE. It is potentiated by SULFONAMIDES and the TRIMETHOPRIM, SULFAMETHOXAZOLE DRUG COMBINATION is the form most often used. It is sometimes used alone as an antimalarial. TRIMETHOPRIM RESISTANCE has been reported. Proloprim,Trimpex

Related Publications

R J Pinney, and J T Smith
September 1972, Antimicrobial agents and chemotherapy,
R J Pinney, and J T Smith
January 1980, Microbiology and immunology,
R J Pinney, and J T Smith
November 1970, Journal of bacteriology,
R J Pinney, and J T Smith
January 1982, Microbiology and immunology,
R J Pinney, and J T Smith
August 1975, Genetical research,
R J Pinney, and J T Smith
June 1973, Journal of general microbiology,
R J Pinney, and J T Smith
April 1980, Molecular & general genetics : MGG,
R J Pinney, and J T Smith
April 1974, Canadian journal of microbiology,
Copied contents to your clipboard!