Use of Escherichia coli mutants to evaluate purines, purine nucleosides, and analogues. 1973

D L Hill, and R F Pittillo

Of 142 purines, purine nucleosides, and analogues tested for inhibition of growth of Escherichia coli B Hill, 45 were active. Of these, 27 were evaluated for inhibition of other E. coli lines, including those resistant to 6-thioguanine, 2-fluoroadenosine, 2,6-diaminopurine, or 6-mercaptopurine. Most toxic to the parent lines were 2-fluoroadenosine, 2-fluoroadenine, 2-fluoro-5'-deoxyadenosine, adenosine, 6-thioguanosine, 6-thioguanine, 6-mercaptopurine, 6-mercaptopurine ribonucleoside, 2-azaadenine, 2'-deoxyinosine, 6-N-aminoadenine, and inosine. Hypoxanthine was strongly inhibitory only to E. coli B Hill. Evidence regarding the substrate specificity of the three purine phosphoribosyltransferases was obtained by assaying for these enzymes in extracts of the various cell lines and by cross-resistance studies. The line selected for resistance to 6-thioguanine had low guanine phosphoribosyltransferase activity (guanosine monophosphate: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) and was deficient in activity for xanthine and 6-thioguanine. The lines selected for resistance to 2-fluoroadenosine and 2,6-diaminopurine were deficient in adenine phosphoribosyltransferase activity (adenosine monophosphate: pyrophosphate phosphoribosyltransferase, EC 2.4.2.7), and that selected for resistance to 6-mercaptopurine had low hypoxanthine phosphoribosyltransferase activity and undetectable activity with 6-mercaptopurine as a substrate. Purine, 6-methylpurine, 2-fluoroadenine, 2,6-diaminopurine, and 2-azaadenine were classified as adenine analogues; 6-mercaptopurine and 8-aza-2,6-diaminopurine, as hypoxanthine analogues; and 6-thioguanine and 2-amino-6-chloropurine, as analogues of guanine. The inhibition of bacterial growth by hypoxanthine, inosine, 2'-deoxyinosine, or adenosine was prevented by small amounts of thiamine or by relatively high concentrations of either cytidine or uridine. Cytidine also reversed the inhibition by some purine and purine ribonucleoside analogues. Orotate phosphoribosyltransferase (OMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.10), a possible site of action for these compounds, was not inhibited directly by the toxic agents.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011684 Purine Nucleosides Purines with a RIBOSE attached that can be phosphorylated to PURINE NUCLEOTIDES. Purine Nucleoside,Nucleoside, Purine,Nucleosides, Purine
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

D L Hill, and R F Pittillo
May 1959, The Journal of biological chemistry,
D L Hill, and R F Pittillo
May 1967, The Biochemical journal,
D L Hill, and R F Pittillo
March 1966, Journal of bacteriology,
D L Hill, and R F Pittillo
December 1971, National Cancer Institute monograph,
D L Hill, and R F Pittillo
January 1977, Horizons in biochemistry and biophysics,
D L Hill, and R F Pittillo
April 1966, Journal of molecular biology,
D L Hill, and R F Pittillo
November 1971, The Journal of organic chemistry,
Copied contents to your clipboard!