Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. 1974

S Pestka

Antibiotics were used as probes of ribosome topology and function. Studies of [(14)C]chloramphenicol and [(14)C]erythromycin binding to ribosomes and polyribosomes revealed the following features. The requirement of high K(+) concentration (150 mM) for [(14)C]chloramphenicol binding to NH(4)Cl-washed ribosomes resulted from the washing procedure. Neither native 70S ribosomes nor polyribosomes require K(+) greater than 30 mM for [(14)C]chloramphenicol binding. Whereas [(14)C]chloramphenicol binds to both ribosomes and polyribosomes, [(14)C]erythromycin binds essentially only to ribosomes. After removal of peptidyl-transfer ribonucleic acid (tRNA) from polyribosomes, [(14)C]erythromycin could then be bound. The effects of a number of antibiotics on [(14)C]chloramphenicol binding to ribosomes and polyribosomes was assessed. It was found that most of the macrolides (erythromycin, carbomycin, spiramycin III, niddamycin, oleandomycin, and tylosin) and streptogramins A and B (vernamycin A, PA114A, vernamycin Balpha, and PA114B) inhibited chloramphenicol binding to NH(4)Cl-washed and native 70S ribosomes, but not to polyribosomes. After removal of peptidyl-tRNA from polyribosomes, [(14)C]chloramphenicol binding was then inhibited. In contrast, sparsomycin and althiomycin inhibited chloram-phenicol binding to polyribosomes, but not to ribosomes. After removal of peptidyl-tRNA from polyribosomes, sparsomycin and althiomycin were then ineffective. The presence of peptidyl-tRNA on polyribosomes apparently is required for binding of sparsomycin and althiomycin, but prevents binding of most macrolides and streptogramins. The lincosaminides (lincomycin and celesticetin) and methymycin (a small macrolide) inhibited [(14)C]chloramphenicol binding to NH(4)Cl-washed and native 70S ribosomes best, but also inhibited the binding to polyribosomes. The amino nucleosides and other antibiotics tested do not seem to interact strongly with the major chloramphenicol-binding site. These results provide knowledge of the interrelationships between antibiotic and substrate ribosome binding sites which should eventually contribute to a map of ribosomal topology.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
Copied contents to your clipboard!