Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway. 1973

T G Cooper, and R P Lawther

Saccharomyces cerevisiae can degrade allantoin in five steps to glyoxylate, ammonia, and "CO(2)." We previously demonstrated that synthesis of the urea carboxylase-allophanate hydrolase multienzyme complex is contingent upon the presence of allophanic acid, the product of the urea carboxylase reaction. Since these enzymes catalyze the last two reactions of allantoin degradation, experiments were performed to establish whether or not the presence of allophanic acid was required for synthesis of any other enzymes participating in this degradative pathway. The data presented here indicate that allophanic acid is required for synthesis of all enzymes participating in allantoin degradation. This conclusion is based upon the observation that: (i) wild-type strains produced a large amount of allantoinase upon addition of allantoin, allantoate, ureidoglycolate, or urea to the medium, (ii) no increase in activity was observed unless the added compound could be metabolized to allophanate, (iii) strains lacking allophanate hydrolase contained large amounts of allantoinase even in the absence of added urea, and (iv) the urea analogue, formamide, was capable of inducing allantoinase synthesis in wild-type strains but would not serve this function in a strain lacking urea carboxylase.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005559 Formamides A group of amides with the general formula of R-CONH2.
D006016 Glycolates Derivatives of ACETIC ACID which contain an hydroxy group attached to the methyl carbon. 2-Hydroxyacetates,Glycolate Ethers,Hydroxyacetate Ethers,Hydroxyacetates,Hydroxyacetic Acids,2 Hydroxyacetates,Acids, Hydroxyacetic,Ethers, Glycolate,Ethers, Hydroxyacetate
D000481 Allantoin A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. Herpecin-L,Sebical,Woun'dres,Herpecin L,HerpecinL
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D001119 Arginase A ureahydrolase that catalyzes the hydrolysis of arginine or canavanine to yield L-ornithine (ORNITHINE) and urea. Deficiency of this enzyme causes HYPERARGININEMIA. EC 3.5.3.1. Arginase A1,Arginase A4,Hepatic Proliferation Inhibitor,Liver Immunoregulatory Protein,Liver-Derived Inhibitory Protein,Liver-Derived Lymphocyte Proliferation Inhibiting Protein,Immunoregulatory Protein, Liver,Inhibitor, Hepatic Proliferation,Inhibitory Protein, Liver-Derived,Liver Derived Inhibitory Protein,Liver Derived Lymphocyte Proliferation Inhibiting Protein,Proliferation Inhibitor, Hepatic,Protein, Liver Immunoregulatory,Protein, Liver-Derived Inhibitory

Related Publications

T G Cooper, and R P Lawther
August 1978, Journal of bacteriology,
T G Cooper, and R P Lawther
October 1987, Journal of bacteriology,
T G Cooper, and R P Lawther
January 1958, Science (New York, N.Y.),
T G Cooper, and R P Lawther
September 1977, Journal of bacteriology,
Copied contents to your clipboard!