Evidence for the involvement of serine transhydroxymethylase in serine and glycine interconversions in Salmonella typhimurium. 1974

G V Stauffer, and J E Brenchley

Salmonella typhimurium can normally use glycine as a serine source to support the growth of serine auxotrophs. This reaction was presumed to occur by the reversible activity of the enzyme, serine transhydroxymethylase (E. C. 2. 1. 2. 1; L-serine: tetrahydrofolic-5, 10 transhydroxymethylase), which is responsible for glycine biosynthesis. However, this enzyme had not been demonstrated to be solely capable of synthesizing serine from glycine in vivo. The isolation and characterization of a mutant able to convert serine to glycine but unable to convert glycine to serine supports the conclusion that a single enzyme is involved in this reversible interconversion of serine and glycine. The mutation conferring this phenotype was mapped with other mutations affecting serine transhydroxymethylase (glyA) and assays demonstrated reduced activities of this enzyme in the mutant.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic
D014166 Transferases Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme "donor:acceptor group transferase". (Enzyme Nomenclature, 1992) EC 2. Transferase

Related Publications

G V Stauffer, and J E Brenchley
February 1977, Biochemistry,
G V Stauffer, and J E Brenchley
September 1972, Biochemistry,
G V Stauffer, and J E Brenchley
November 1964, The Journal of biological chemistry,
G V Stauffer, and J E Brenchley
April 1980, The Journal of biological chemistry,
G V Stauffer, and J E Brenchley
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
G V Stauffer, and J E Brenchley
July 1962, Biochimica et biophysica acta,
G V Stauffer, and J E Brenchley
December 1964, Bollettino della Societa italiana di biologia sperimentale,
G V Stauffer, and J E Brenchley
December 1989, Molecular & general genetics : MGG,
Copied contents to your clipboard!